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The MURI project titled Characterization and Mitigation of Failures in Complex 

Dynamical Systems was started on June 1, 2001 and ended on May 31, 2007. It was 
conducted under the leadership of Pennsylvania State University, University Park, PA 
and other participating universities were Carnegie-Mellon, Louisiana Tech, and Duke. 
This research project has developed a novel approach to anomaly characterization and 
real-time decision-making in complex dynamical systems to achieve pervasive fault 
tolerance based on the emerging information. Extensive experimental research has been 
conducted to validate the theoretical results.  Special-purpose laboratory apparatuses have 
been procured.  On the experimental side of the CSF MURI project, three laboratories 
have been constructed at Penn State under equipment support from DURIP grants for five 
consecutive years. 

The research work, conducted under this research, has resulted in publication of more 
than 125 scholarly publications, one research monograph, and completion of 15 doctoral 
dissertations. This MURI project has effectively transferred the newly developed 
technology to defense industry through five SBIR and STTR projects in collaboration 
with industry. 
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STATEMENT OF THE PROBLEM STUDIED 

The research, conducted under this MURI project, focused on characterization and 
real-time mitigation of pervasive faults in human-engineered complex dynamical 
systems. These systems, although architecturally similar to physical systems, are often 
structurally quite different.  At the lowest level of decomposition, the macroscopic effects 
could be triggered by single fault manifestations of emerging physical defects in 
hardware, erroneous states of software, or human operator errors.  Analytical methods 
have been developed and experimentally validated for sustaining order and normalcy by 
deriving and finding critical values of physical parameters, where the subsequent 
behavior of the macroscopic system could change abruptly.   

For theoretical analyses, complex dynamical systems have been modeled as hybrid 
interacting automata, whose continuously varying dynamics characterize the physical 
process at the lowest level of abstraction.  Discrete event models at the higher levels 
capture the cognitive response of the system to observed emerging phenomena.  This 
concept has been used to utilize the dynamical behavior of structural materials in 
formulating damage mitigating control algorithms at the system level to enhance the life 
of critical mechanical components. The research has formulated analytical models of 
component interactions triggered by different types of failures to: (i) predict emerging 
pathological system behavior from time-series observations of events and their dynamic 
interactions, and (ii) formulate adaptive mechanisms to circumvent or mitigate the effects 
of pathological behavior.  The research efforts have resulted in comprehensive 
characterization of pathological behavior, both syntactic and operational, through 
analysis of spatial-temporal patterns in databases of event/action dynamics as well as by 
extensive experimentation.   

The research has provided a scientific basis for engineering dependability in military 
operations with a fundamentally new approach to engineering and operation of complex 
informational systems for pervasive fault tolerance.  Instead of specifying parameters for 
worst-case design of system components, these systems are designed by specifying a 
scalable set of resources (components) that interact to support evolving operational needs 
of defense applications in a dynamic and uncertain environment. 
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Multidisciplinary University Research Initiative (MURI) Project 

Characterization and Mitigation of Failures in Complex Dynamical Systems 
Principal Investigator: Professor Asok Ray, Pennsylvania State University 

Participating Universities: Carnegie-Mellon; Louisiana Tech; and Duke 
 

The objective of the Complex Systems Failure (CSF) Multidisciplinary University 
Research Initiative (MURI) project has been to formulate and disseminate a knowledge base 
of science and technology for enhancing dependability of complex engineering systems that 
include both human-operated and unmanned machinery.  It has developed a fundamentally 
new approach to anomaly characterization and real-time decision-making in complex 
dynamical systems to achieve pervasive fault tolerance based on the emerging information.  
Dependability of complex systems is achieved by identifying and mitigating the origins of 
chaos and disorder at a very early stage through dynamic coordination and control of the 
critical subsystems. 

On the theoretical side of the CSF MURI project, complex dynamical systems (e.g., 
chaotic motion and bifurcation) are modeled from the perspectives of (Classical and 
Quantum) Statistical Mechanics and Automata Theory to retrieve relevant information 
for decision and control.  In this approach, dynamical systems are represented by hybrid 
interacting automata where continuously varying information can be captured at various 
levels of abstraction.  For example, this concept utilizes the information on multi-fractal 
behavior of ductile alloys in formulating damage mitigating decision & control 
algorithms at the system level to enhance the service life of critical electromechanical 
components in complex systems.  The goal is to formulate analytical models of 
component interaction dynamics triggered by various types of exogenous disturbances 
and intrinsic failures to (i) predict emerging pathological behavior of the dynamical 
system from observations of time-series data and time-dependent discrete events; and (ii) 
formulate adaptive mechanisms to circumvent or mitigate the effects of pervasive faults. 

Extensive experimental research has been conducted to validate the above theoretical 
results.  Special-purpose laboratory apparatuses have been procured.  On the 
experimental side of the CSF MURI project, the following three laboratories have been 
constructed at Penn State under equipment support from DURIP grants for five 
consecutive years: 

● Electromechanical and Electronic Systems Laboratory   

● Networked Robotic Systems and Signal Intelligence Laboratory  

● Engineering Systems Simulation Laboratory 

The research work, conducted under this MURI from June 1, 2001 to May 31, 2007, 
has been reported in archive journals, refereed conferences, patent disclosures, and 
research monographs, as listed below.   

 

SUMMARY OF THE MOST IMPORTANT RESULTS 



● Over fifty archive journal publications  

● Seventy five refereed conference publications  

● Three patent disclosures 

● One research monograph and several book chapters 

This MURI project has supported training of five postdoctoral scholars and has 
produced fifteen doctoral dissertations. A majority of the graduate students, upon 
completion of their doctoral education, have accepted research employment in DoD 
laboratories and defense contractors.  

This MURI project has effectively transferred the newly developed technology to 
defense industry through five SBIR and STTR projects in collaboration with industry. 
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Background:  The multidisciplinary research on anomaly detection and failure pattern 
discovery in Electromechanical Systems and Networked Robotic systems, conducted 
under the ARO grant DAAD19-01-06046, has been extended to Computer User Login 
Authentication.  The objective is to permit authorized entry and inhibit unauthorized 
access into computer systems and networks, based on the key stroke typing of individual 
users.  This neural-network-based authentication algorithm makes a suboptimal trade-off 
between the probabilities of correct authorization and false through classification of the 
Keystroke-typing patterns as normal or anomalous.   

Key Features:  The neural network architecture in key-stroke pattern classification has 
two types of connections: (i) weight vector W; and (ii) dispersion vector V.  In the 
learning phase, W adapts to the users’ keystroke exemplars, and V adapts to dispersion 
(e.g., standard deviation) of the users’ keystrokes.  The algorithm consists of three 
phases: training, validation, and testing.  The authentication system learns the vectors W 
and V in the training phase.  The system parameters, Scale Factor (SF) and Percentage 
Success (PS), are adjusted during the validation phase. In the testing and actual-use 
phase, correct classification results in fine tuning W and V, thereby adapting to the users’ 
typing pattern.   The weight vector W and the dispersion vector V adapt to the changing 
typing patterns of the users during regular use. 

Contributions: The significant contributions of the neural-network-based authentication 
algorithm are outlined below:  

(1) A novel neural network architecture to build authentication systems  

(2) Self adaptation to changes in typing patterns without re-training the network  

(3) Robustness of network performance connections with respect to user characteristics  

(4) Automatic enhancement or relaxation of security based on the SF and PS parameters  

(5) Variability of W and V keep track of variability in the key-stroke patterns 
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Performance Summary: The authentication system autonomously learns the keystroke 
patterns of an individual user and uniquely verifies whether the user is a legitimate one or 
an impostor. The system also adapts to a user’s changing typing patterns.  A prototype 
system, on the average, has yielded ~1.36% Imposter Pass Rate (IPR) and ~2.31% False 
Authentication Rate (FAR).  These results exceed those of existing authentication 
systems. 

 

3. V. V. Phoha, A Ray, S. Joshi, S. Vyuruu, S. Phoha, “Hidden Markov Model 
("HMM")-Based User Authentication Using Keystroke Dynamics,” Patent filed 
through Blakely Sokoloff Taylor & Zafman, LLP. 

Background:  The multidisciplinary research on anomaly detection and failure pattern 
discovery in Electromechanical Systems and Networked Robotic systems, conducted 
under the ARO grant DAAD19-01-06046, has been extended to Computer User Login 
Authentication.  The objective is to permit authorized entry and inhibit unauthorized 
access into computer systems and networks, based on the key stroke typing of individual 
users.  This neural-network-based authentication algorithm makes a suboptimal trade-off 
between the probabilities of correct authorization and false through classification of the 
Keystroke-typing patterns as normal or anomalous.   

Key Features:  A novel computer user authentication technique using Hidden Markov 
Model (HMM) has been developed based on key-stroke pattern classification.  
Authentication of a user is made in two stages: (i) user identification stage, wherein the 
user’s identity is determined by the maximum probability score for the given keystroke 
pattern, and (ii) user verification stage, wherein the probability score for the given 
keystroke pattern is examined for a claimed user. Decisions on the authenticity of a user 
are made based on the results of both the stages and threshold criteria. 

Contributions: The significant contributions of the HMM-based authentication algorithm 
are outlined below:  

(1) A novel HMM architecture to build authentication systems  

(2) Self adaptation to changes in typing patterns without re-training the network  

(3) Robustness of network performance connections with respect to user characteristics  

Performance Summary: The authentication system autonomously learns the keystroke 
patterns of an individual user and uniquely verifies whether the user is a legitimate one or 
an impostor. The system also adapts to a user’s changing typing patterns.  A prototype 
system, on the average, has yielded a false accept rate of ~0.74% and false reject rate of 
~8.06%.   
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Abstract

This paper presents a novel concept of anomaly detection in complex dynamical systems using tools of Symbolic Dynamics,
Finite State Automata, and Pattern Recognition, where time-series data of the observed variables on the fast time-scale
are analyzed at slow time-scale epochs for early detection of (possible) anomalies. The concept of anomaly detection in
dynamical systems is elucidated based on experimental data that have been generated from an active electronic circuit with
a slowly varying dissipation parameter.
? 2004 Elsevier B.V. All rights reserved.

Keywords: Fault detection; Symbolic dynamics; Pattern recognition; Complex systems

1. Introduction

Anomaly in a dynamical system is de3ned as a
deviation from its nominal behavior and can be as-
sociated with parametric or non-parametric changes
that may gradually evolve in the system. Early detec-
tion of anomalies in complex dynamical systems is
essential not only for prevention of cascading catas-
trophic failures, but also for enhancement of perfor-
mance and availability [16]. For anomaly detection, it
might be necessary to rely on time-series data gener-
ated from sensors and other sources of information [1],

� This work has been supported in part by Army Research O7ce
(ARO) under Grant No. DAAD19-01-1-0646; and NASA Glenn
Research Center under Grant No. NNC04GA49G.

∗ Tel.: +1-814-865-6377; fax: +1-814-863-4848.
E-mail address: axr2@psu.edu (A. Ray).

because accurate and computationally tractable mod-
elling of complex system dynamics is often infea-
sible solely based on the fundamental principles of
physics.
This paper formulates and validates, by labora-

tory experimentation, a novel concept for detection
of slowly evolving anomalies in complex dynamical
systems. Often such dynamical systems are either
self-excited or can be stimulated with a priori known
exogenous inputs to recognize (possible) anomaly
patterns from the observed stationary response. Early
detection of an anomaly (i.e., small parametric or
non-parametric changes) has motivated formulation
and validation of the proposed Symbolic Dynamic
approach to pattern recognition, which is based on
the following assumptions:

• The system behavior is stationary at the fast time
scale of the process dynamics;

0165-1684/$ - see front matter ? 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.sigpro.2004.03.011
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• An observable non-stationary behavior of the dy-
namical system can be associated with anomaly(ies)
evolving at a slow time scale.

The theme of anomaly detection, formulated in this
paper, is built upon the concepts of Symbolic Dynam-
ics [14,15] Finite State Automata [12], and Pattern
Recognition [9] as a means to qualitatively describe
the (fast-time-scale) dynamical behavior in terms
of symbol sequences [2,4]. Appropriate phase-space
partitioning of the dynamical system yields an alpha-
bet to obtain symbol sequences from time-series data
[1,8,13]. Then, tools of computational mechanics [7]
are used to identify statistical patterns in these sym-
bolic sequences through construction of a (probabilis-
tic) 3nite-state machine from each symbol sequence.
Transition probability matrices of the 3nite-state ma-
chines, obtained from the symbol sequences, capture
the pattern of the system behavior by information
compression. For anomaly detection, it su7ces that a
detectable change in the pattern represents a deviation
of the nominal behavior from an anomalous one. The
state probability vectors, which are derived from the
respective state transition matrices under the nominal
and an anomalous condition, yield a vector measure of
the anomaly, which provides more information than a
scalar measure such as the complexity measure [20].
In contrast to the �-machine [7,20] that has an a

priori unknown structure and yields optimal pattern
discovery in the sense of mutual information [5,11],
the state machine adopted in this paper has an a priori
known structure that can be freely chosen. Although
the proposed approach is suboptimal, it provides a
common state machine structure where physical sig-
ni3cance of each state is invariant under changes in
the statistical patterns of symbol sequences. This fea-
ture allows unambiguous detection of possible anoma-
lies from symbol sequences at diDerent (slow-time)
epochs. The proposed approach is apparently compu-
tationally faster than the �-machine [20], because of
signi3cantly fewer number of Eoating point arithmetic
operations. These are the motivating factors for in-
troducing this new anomaly detection concept that is
based on a 3xed-structure 3xed-order Markov chain,
called the D-Markov machine in the sequel.
The anomaly detection problem is separated into

two parts [21]: (i) forward problem of Pattern
Discovery to identify variations in the anomalous

behavior patterns, compared to those of the nominal
behavior; and (ii) inverse problem of Pattern Recog-
nition to infer parametric or non-parametric changes
based on the learnt patterns and observed stationary
response. The inverse problem could be ill-posed or
have no unique solution. That is, it may not always
be possible to identify a unique anomaly pattern
based on the observed behavior of the dynamical
system. Nevertheless, the feasible range of parameter
variation estimates can be narrowed down from the
intersection of the information generated from inverse
images of the responses under several stimuli.
It is envisioned that complex dynamical systems

will acquire the ability of self-diagnostics through us-
age of the proposed anomaly detection technique that
is analogous to the diagnostic procedure employed in
medical practice in the following sense. Similar to
the notion of injecting medication or inoculation on a
nominally healthy patient, a dynamical system would
be excited with known stimuli (chosen in the for-
ward problem) in the idle cycles for self diagnosis and
health monitoring. The inferred information on health
status can then be used for the purpose of self-healing
control or life-extending control [25]. This paper fo-
cuses on the forward problem and demonstrates the
e7cacy of anomaly detection based on experimental
data generated from an active electronic circuit with
a slowly varying dissipation parameter.
The paper is organized in seven sections and two

appendices. Section 2 brieEy introduces the notion
of nonlinear time-series analysis. Section 3 pro-
vides a brief overview of symbolic dynamics and
encoding of time series data. Section 4 presents two
ensemble approaches for statistical pattern represen-
tation. It also presents information extraction based
on the �-machine [7] and the D-Markov machine,
as well as their comparison from diDerent perspec-
tives. Section 5 presents the notion of anomaly
measure to quantify the changing patterns of anoma-
lous behavior of the dynamical system form the
information-theoretic perspectives, followed by an
outline of the anomaly detection procedure. Sec-
tion 6 presents experimental results on a nonlinear
active electronic circuit to demonstrate e7cacy of
the proposed anomaly detection technique. Section
7 summarizes and concludes the paper with recom-
mendations for future research. Appendix A explains
the physical signi3cance of information-theoretic
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quantities used in the Section 4.1 and Section 5.
Appendix B introduces the concept of shift spaces,
which is used to delineate the diDerences
between the �-machine [7] and theD-Markov machine
in Section 4.4.

2. Nonlinear time-series analysis

This section presents nonlinear time-series analysis
(NTSA) that is needed to extract relevant physical in-
formation on the dynamical system from the observed
data. NTSA techniques are usually executed in the
following steps [1]:
1. Signal separation: The (deterministic) time-

dependent signal {y(n) : n∈N}, where N is the set
of positive integers, is separated from noise, using
time-frequency and other types of analysis.
2. Phase space reconstruction: Based on the Tak-

ens Embedding theorem [22], time lagged or delayed
variables are used to construct the state vector x(n)
in a phase space of dimension dE (which is diDeo-
morphically equivalent to the attractor of the original
dynamical system) as follows:

x(n) = [y(n); y(n+ T ); : : : ; y(n+ (dE − 1)T )]; (1)

where the time lag T is determined using mutual in-
formation; and one of the ways to determine dE is the
false nearest neighbors test [1].
3. Signal classi4cation: Signal classi3cation and

system identi3cation in nonlinear chaotic systems re-
quire a set of invariants for each subsystem of interest
followed by comparison of observations with those
in the library of invariants. The invariants are proper-
ties of the attractor and could be independent of any
particular trajectory. These invariants can be divided
into two classes: fractal dimensions and Lyapunov
exponents. Fractal dimensions characterize geometri-
cal complexity of dynamics (e.g., spatial distribution
of points along a system orbit); and Lyapunov expo-
nents describe the dynamical complexity (e.g., stretch-
ing and folding of an orbit in the phase space) [18].
4. Modeling and prediction: This step involves

determination of the parameters of the assumed model
of the dynamics, which is consistent with the invari-
ant classi3ers (e.g., Lyapunov exponents, and fractal
dimensions).

The 3rst three steps show how chaotic systems may
be separated from stochastic ones and, at the same
time, provide estimates of the degrees of freedom
and the complexity of the underlying dynamical sys-
tem. Based on this information, Step 4 formulates a
state-space model that can be used for prediction of
anomalies and incipient failures. The functional form
often used in this step, includes orthogonal polynomi-
als and radial basis functions. This paper has adopted
an alternative class of discrete models inspired from
Automata Theory, which is built upon the principles
of Symbolic Dynamics as described in the following
section.

3. Symbolic dynamics and encoding

This section introduces the concept of Symbolic
Dynamics and its usage for encoding nonlinear sys-
tem dynamics from observed time-series data. Let a
continuously varying physical process be modelled as
a 3nite-dimensional dynamical system in the setting
of an initial value problem:
dx(t)
dt

= f(x(t); �(ts); x(0) = x0; (2)

where t ∈ [0;∞) denotes the (fast-scale) time; x∈Rn

is the state vector in the phase space; and �∈R‘ is
the (possibly anomalous) parameter vector varying
in (slow-scale) time ts. Sole usage of the model in
Eq. (2) may not always be feasible due to unknown
parametric and non-parametric uncertainties and
noise. A convenient way of learning the dynami-
cal behavior is to rely on the additional information
provided by (sensor-based) time-series data [1,4].
A tool for behavior description of nonlinear dynam-

ical systems is based on the concept of formal lan-
guages for transitions from smooth dynamics to a dis-
crete symbolic description [2]. The phase space of the
dynamical system in Eq. (2) is partitioned into a 3nite
number of cells, so as to obtain a coordinate grid of
the space. A compact (i.e., closed and bounded) re-
gion �∈Rn, within which the (stationary) motion un-
der the speci3c exogenous stimulus is circumscribed,
is identi3ed. Encoding of � is accomplished by intro-
ducing a partition B ≡ {B0; : : : ; Bm−1} consisting of
m mutually exclusive (i.e., Bj ∩ Bk = ∅ ∀j �= k), and
exhaustive (i.e.,

⋃m−1
j=0 Bj = �) cells. The dynamical

system describes an orbit by the time-series data as:
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Fig. 1. Continuous dynamics to symbolic dynamics.

O ≡ {x0; x1 · · · ; xk · · ·}; xi ∈�, which passes through
or touches the cells of the partition B.
Let us denote the cell visited by the trajectory at a

time instant as a random variable S that takes a sym-
bol value s∈A. The setA of m distinct symbols that
label the partition elements is called the symbol alpha-
bet. Each initial state x0 ∈� generates a sequence of
symbols de3ned by a mapping from the phase space
into the symbol space as:

x0 → si0si1si2 · · · sik · · · : (3)

The mapping in Eq. (3) is called Symbolic Dynam-
ics as it attributes a legal (i.e., physically admissible)
symbol sequence to the system dynamics starting from
an initial state. (Note: A symbol alphabetA is called
a generating partition of the phase space � if every
legal symbol sequence uniquely determines a speci3c
initial condition x0, i.e., every symbolic orbit uniquely
identi3es one continuous space orbit.) Fig. 1 pictori-
ally elucidates the concepts of partitioning a 3nite re-
gion of the phase space and mapping from the parti-
tioned space into the symbol alphabet. This represents
a spatial and temporal discretization of the system
dynamics de3ned by the trajectories. Fig. 1 also shows
conversion of the symbol sequence into a 3nite-state
machine as explained in later sections.
Symbolic dynamics can be viewed as coarse grain-

ing of the phase space, which is subjected to (possible)
loss of information resulting from granular impreci-
sion of partitioning boxes, measurement noise and
errors, and sensitivity to initial conditions. However,
the essential robust features (e.g., periodicity and
chaotic behavior of an orbit) are expected to be pre-
served in the symbol sequences through an appropri-
ate partitioning of the phase space [2]. Although the
theory of phase-space partitioning is well developed

for one-dimensional mappings, very few results are
known for two- and higher-dimensional systems [4].

4. Pattern identi�cation

Given the intricacy of phase trajectories in complex
dynamical systems, the challenge is to identify their
patterns in an appropriate category by using one of
the following two alternative approaches:

• The single-item approach, which relies on Kol-
mogorov Chiatin (KC) complexity, also known as
algorithmic complexity [5], for exact pattern regen-
eration;

• The ensemble approach, which regards the pattern
as one of many possible experimental outcomes,
for estimated pattern regeneration.

While the single-item approach is common in coding
theory and computer science, the ensemble approach
has been adopted in this paper due to its physical
and statistical relevance. As some of the legal sym-
bol sequences may occur more frequently than oth-
ers, a probability is attributed to each observed se-
quence. The collection of all legal symbol sequences
S−M · · · S−2S−1S0S1 · · · SN , N;M = 0; 1; 2 : : :, de3nes
a stochastic process that is a symbolic probabilistic
description of the continuous system dynamics.
Let us symbolically denote a discrete-time,

discrete-valued stochastic process as

S ≡ · · · ; S−2S−1S0S1S2 · · · ; (4)

where each random variable Si takes exactly one
value in the (3nite) alphabet A of m symbols (see
Section 3). The symbolic stochastic process S is de-
pendent on the speci3c partitioning of the phase space
and is non-Markovian, in general. Even if a partition-
ing that makes the stochastic process a Markov chain
exists, identi3cation of such a partitioning is not al-
ways feasible because the individual cells may have
fractal boundaries instead of being simple geometri-
cal objects. In essence, there is a trade-oD between
selecting a simple partitioning leading to a compli-
cated stochastic process, and a complicated partition-
ing leading to a simple stochastic process. Recent
literature has reported a comprehensive numerical pro-
cedure for construction phase-space partitions from
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the time-series data [13]. Having de3ned a partition
of the phase space, the time-series data is converted
to a symbol sequence that, in turn, is used for con-
struction of a 3nite-state machine using the tools of
Computational Mechanics [7] as illustrated in Fig. 1.
This paper considers two alternative techniques of

3nite-state machine construction from a given sym-
bol sequence S: (i) the �-machine formulation [20];
and (ii) a new concept based on Dth order Markov
chains, called the D-Markov machine, for identifying
patterns based on time series analysis of the observed
data. Both techniques rely on information-theoretic
principles (see Appendix A) and are based on
computational mechanics [7].

4.1. The �-machine

Like statistical mechanics [10,4], computational
mechanics is concerned with dynamical systems
consisting of many partially correlated components.
Whereas Statistical Mechanics deals with the local
space–time behavior and interactions of the system
elements, computational mechanics relies on the joint
probability distribution of the phase-space trajectories
of a dynamical system. The �-machine construction
[7,20] makes use of the joint probability distribution
to infer the information processing being performed
by the dynamical system. This is developed using
the statistical mechanics of orbit ensembles, rather
than focusing on the computational complexity of
individual orbits.
Let the symbolic representation of a discrete-time,

discrete-valued stochastic process be denoted by: S ≡
· · · S−2S−1S0S1S2 · · · as de3ned earlier in Section 4.
At any instant t, this sequence of random variables can

be split into a sequence
←
S t of the past and a sequence

→
S t of the future. Assuming conditional stationarity of

the symbolic process S (i.e., P[
←
S t |
→
S t =

→
s ] being in-

dependent of t), the subscript t can be dropped to de-

note the past and future sequences as
←
S and

→
S , respec-

tively. A symbol string, made of the 3rst L symbols

of
→
S , is denoted by

→
S L. Similarly, a symbol string,

made of the last L symbols of
←
S , is denoted by

←
S L.

Prediction of the future
→
S necessitates determina-

tion of its probability conditioned on the past
←
S , which

requires existence of a function � mapping histories

←
s to predictions P(

→
S |←s ). In essence, a prediction im-

poses a partition on the set
←
S of all histories. The cells

of this partition contain histories for which the same
prediction is made and are called the e7ective states
of the process under the given predictor. The set of
eDective states is denoted by R; a random variable for
an eDective state is denoted by R and its realization
by �.
The objective of �-machine construction is to 3nd

a predictor that is an optimal partition of the set
←
S of

histories, which requires invoking two criteria in the
theory of Computational Mechanics [6]:
1. Optimal Prediction: For any partition of his-

tories or eDective states R, the conditional entropy

H [
→
S L|R]¿H [

→
S L|←S ]; ∀L∈N; ∀←S ∈←S , is equiva-

lent to remembering the whole past. EDective statesR
are called prescient if the equality is attained ∀L∈N.
Therefore, optimal prediction needs the eDective states
to be prescient.
2. Principle of Occam Razor: The prescient states

with the least complexity are selected, where complex-
ity is de3ned as the measured Shannon information of
the eDective states:

H [R] = −
∑
�∈R

P(R= �)logP(R= �): (5)

Eq. (5) measures the amount of past information
needed for future prediction and is known as Statisti-
cal Complexity denoted by C�(R) (see Appendix A).
For each symbolic processS, there is a unique set of

prescient states known as causal states that minimize
the statistical complexity C�(R).

De�nition 4.1 (Shalizi et al. [20]): Let S be a (con-

ditionally) stationary symbolic process and
←
S be the

set of histories. Let a mapping � :
←
S → �(

→
S) from

the set
←
S of histories into a collection �(

→
S) of mea-

surable subsets of
←
S be de3ned as:

∀ ∈�(
→
S); �(

←
s ) ≡ {←s ′ ∈←S such that

P(
→
S ∈ |←S =

←
s ) = P(

→
S ∈ |←S =

←
s ′)}: (6)

Then, the members of the range of the function � are
called the causal states of the symbolic process S.
The ith causal state is denoted by qi and the set of

all causal states by Q ⊆ �(
→
S). The random variable
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corresponding to a causal state is denoted by Q and
its realization by q.

Given an initial causal state and the next symbol
from the symbolic process, only successor causal
states are possible. This is represented by the legal
transitions among the causal states, and the probabil-
ities of these transitions. Speci3cally, the probability
of transition from state qi to state qj on a single
symbol s is expressed as:

T (s)
ij = P(

→
S 1 = s;Q′ = qj |Q= qi) ∀qi; qj ∈Q; (7)

∑
s∈A

∑
qj∈Q

T (s)
ij = 1: (8)

The combination of causal states and transitions is
called the �-machine (also known as the causal state
model [20]) of a given symbolic process. Thus, the
�-machine represents the way in which the symbolic
process stores and transforms information. It also pro-
vides a description of the pattern or regularities in the
process, in the sense that the pattern is an algebraic
structure determined by the causal states and their tran-
sitions. The set of labelled transition probabilities can
be used to obtain a stochastic matrix [3] given by:
T=

∑
s∈A Ts where the square matrixTs is de3ned

as: Ts = [T s
ij] ∀s∈A. Denoting p as the left eigen-

vector of T, corresponding to the eigenvalue " = 1,
the probability of being in a particular causal state can
be obtained by normalizing ‖p‖‘1 = 1. A procedure
for construction of the �-machine is outlined below.
The original �-machine construction algorithm is the

subtree-merging algorithm as introduced in [7,6]. The
default assumption of this technique was employed
by Surana et al. [21] for anomaly detection. This ap-
proach has several shortcomings, such as lack of a sys-
tematic procedure for choosing the algorithm param-
eters, may return non-deterministic causal states, and
also suDers from slow convergence rates. Recently,
Shalizi et al. [20] have developed a code known as
Causal State Splitting Reconstruction (CSSR) that is
based on state splitting instead of state merging as was
done in the earlier algorithm of subtree-merging [7].
The CSSR algorithm starts with a simple model for
the symbolic process and elaborates the model com-
ponents only when statistically justi3ed. Initially, the
algorithm assumes the process to be independent and
identically distributed (iid) that can be represented by

a single causal state and hence zero statistical com-
plexity and high entropy rate. At this stage, CSSR uses
statistical tests to determine when it must add states
to the model, which increases the estimated complex-
ity, while lowering the entropy rate h� (see Appendix
A). A key and distinguishing feature of the CSSR
code is that it maintains homogeneity of the causal
states and deterministic state-to-state transitions as the
model grows. Complexity of the CSSR algorithm is:
O(mLmax ) + O(m2Lmax+1) + O(N ), where m is the size
of the alphabet A; N is the data size and Lmax is the
length of the longest history to be considered. Details
are given in [20].

4.2. The suboptimal D-markov machine

This section presents a new alternative approach for
representing the pattern in a symbolic process, which
is motivated from the perspective of anomaly detec-
tion. The core assumption here is that the symbolic
process can be represented to a desired level of accu-
racy as a Dth order Markov chain, by appropriately
choosing D∈N.

De�nition 4.2. A stochastic symbolic stationary pro-
cess S ≡ · · · S−2S−1S0S1S2 · · · is called Dth order
Markov process if the probability of the next symbol
depends only on the previous (at most) D symbols,
i.e. the following condition holds:

P(Si|Si−1Si−2 · · · Si−D · · ·) = P(Si|Si−1 · · · Si−D) (9)

Alternatively, symbol strings
←
S ,
←
S ′ ∈←S become indis-

tinguishable whenever the respective substrings
←
S D

and
←
S ′D, made of the most recent D symbols, are iden-

tical.

De3nition (4.2) can be interpreted as follows:

∀ ←
S ,
←
S ′ ∈←S such that |←S |¿D and |

←
S ′|¿D,

(
←
S ′ ∈ �(

←
S ) and

←
S ∈ �(

←
S ′)) iD

←
S D =

←
S ′D. Thus, a set

{←S L :L¿D} of symbol stings can be partitioned into
a maximum of |A|D equivalence classes where A is
the symbol alphabet, under the equivalence relation

de3ned in Eq. (6). Each symbol string in {←S L: L¿D}
either belongs to one of the |A|D equivalence classes
or has a distinct equivalence class. All such symbol
strings belonging to the distinct equivalence class
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form transient states, and would not be of concern to
anomaly detection for a (fast-time-scale) stationary
condition under (slowly changing) anomalies. Given
D∈N and a symbol string

←
s with |←s |=D, the e7ec-

tive state q(D;
←
s ) is the equivalence class of symbol

strings as de3ned below:

q(D;
←
s ) = {←S ∈←S :

←
S D =

←
s } (10)

and the set Q(D) of e7ective states of the symbolic
process is the collection of all such equivalence
classes. That is,

Q(D) = {q(D;
←
s ):
←
s ∈←SD} (11)

and hence |Q(D)| = |A|D. A random variable for a
state in the above set Q of states is denoted by Q and
the jth state as qj. The probability of transitions from
state qj to state qk is de3ned as:

$jk = P(s∈→S 1 | qj ∈Q; (s; qj) → qk);
∑
k

$jk = 1; (12)

Given an initial state and the next symbol from the
original process, only certain successor states are ac-
cessible. This is represented as the allowed state tran-
sitions resulting from a single symbol. Note that $ij=0
if s2s3 · · · sD �= s′1 · · · s′D−1 whenever qi ≡ s1s2 · · · sD
and qj ≡ s′1s

′
2 · · · s′D. Thus, for a D-Markov machine,

the stochastic matrix % ≡ [$ij] becomes a branded
matrix with at most |A|D+1 nonzero entries.
The construction of a D-Markov machine is fairly

straightforward. GivenD∈N, the states are as de3ned
in Eqs. (10) and (11). On a given symbol sequence
S, a window of length (D + 1) is slided by keeping
a count of occurrences of sequences si1 · · · siDsiD+1

and si1 · · · siD which are, respectively, denoted by
N (si1 · · · siDsiD+1) and N (si1 · · · siD). Note that if
N (si1 · · · siD) = 0, then the state q ≡ si1 · · · siD ∈Q has
zero probability of occurrence. For N (si1 · · · siD) �= 0),
the transitions probabilities are then obtained by these
frequency counts as follows:

$jk =
P(si1 · · · siDs)
P(si1 · · · siD)

≈ N (si1 · · · siDs)
N (si1 · · · siD)

; (13)

where the corresponding states are denoted by: qj ≡
si1si2 · · · siD and qk ≡ si2 · · · siDs.
As an example, Fig. 2 shows the 3nite-state ma-

chine and the associated state transition matrix for a
D-Markov machine, where the alphabet A = {0; 1},

p00    1-p00 0       0

0       0    p01 1-p01

p10 1-p10 0       0

0       0    p11 1-p11

00

10

01

11

0

0

0

0

1

1

1

1

Fig. 2. State machine with D = 2, and |A| = 2.

i.e., alphabet size |A| = 2; and the states are chosen
as words of length D=2 from a symbol sequenceS.
Consequently, the total number of states is |A|D = 4,
which is the number of permutations of the alphabet
symbols within a word of length D; and the set of
states Q = {00; 01; 10; 11}. The state transition ma-
trix on the right half of Fig. 2 denotes the probability
$ij = pij of occurrence of the symbol 0∈A at the
state q ≡ ij, where i; j ∈A. The states are joined by
edges labelled by a symbol in the alphabet. The state
machine moves from one state to another upon oc-
currence of an event as a new symbol in the symbol
sequence is received and the resulting transition ma-
trix has at most |A|D+1 =8 non-zero entries. The ma-
chine language is complete in the sense that there are
diDerent outgoing edges marked by diDerent symbols;
however, it is possible that some of these arcs may
have zero probability.

4.3. Statistical mechanical concept of D-Markov
machine

This section outlines an analogy between the struc-
tural features of the D-Markov machine and those of
spin models in Statistical Mechanics. The main idea
is derived from the doctoral dissertation of Feldman
[10] who has demonstrated how measures of patterns
from Information Theory and Computational Mechan-
ics are captured in the construction of �-Machines. In
general, the eDects of an anomaly are reEected in the
respective state transition matrices. Thus, the structure
of the 3nite-state machine is 3xed for a given alpha-
bet size |A| and window length D. Furthermore, the
number of edges is also 3nite because of the 3nite al-
phabet size. The elements of the state transition matrix
(that is a stochastic matrix [3]) are identi3ed from the
symbol sequence.
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For |A| = 2 and D = 2, the 3nite-state machine
construction is (to some extent) analogous to the
one-dimensional Ising model of spin-1/2 systems with
nearest neighbor interactions, where the z-component
of each spin takes on one of the two possible values
s=+1 or s= −1 [10,19]. For |A|¿ 3, the machine
would be analogous to one-dimensional Potts model,
where each spin is directed in the z-direction with
|A| diDerent discrete values sk : k ∈ 1; 2; : : : ; |A|; for
a j=2-spin model, the alphabet size |A| = j + 1 [4].
For D¿ 2, the spin interactions extend up to the
(D − 1)th neighbor.

4.4. Comparison of D-Markov machine and
�-machine

An �-machine seeks to 3nd the patterns in the
time series data in the form of a 3nite-state machine,
whose states are chosen for optimal prediction of the
symbolic process; and a 3nite-state automation can
be used as a pattern for prediction [20]. An alterna-
tive notion of the pattern is one which can be used
to compress the given observation. The 3rst notion
of the pattern subsumes the second, because the ca-
pability of optimal prediction necessarily leads to the
compression as seen in the construction of states by
lumping histories together. However, the converse is
not true in general. For the purpose of anomaly detec-
tion, the second notion of pattern is su7cient because
the goal is to represent and detect the deviation of
an anomalous behavior from the nominal behavior.
This has been the motivating factor for proposing
an alternative technique, based on the 3xed structure
D-Markov machine. It is possible to detect the evolv-
ing anomaly, if any, as a change in the probability
distribution over the states.
Another distinction between the D-Markov ma-

chine and �-machine can be seen in terms of 4nite-type
shifts and so4c shifts [15] (see Appendix B). Basic
distinction between 3nite-type shifts and so3c shifts
can be characterized in terms of the memory: while a
3nite-type shift has 3nite-length memory, a so3c shift
uses 3nite amount of memory in representing the
patterns. Hence, 3nite-type shifts are strictly proper
subsets of so3c shifts. While, any 3nite-type shift has
a representation as a graph, so3c shifts can be repre-
sented as a labelled graph. As a result, the 3nite-type
shift can be considered as an “extreme version” of a

D-Markov chain (for an appropriateD) and so3c shifts
as an “extreme version” of a Hidden Markov process
[24], respectively. The shifts have been referred to as
“extreme” in the sense that they specify only a set of
allowed sequences of symbols (i.e., symbol sequences
that are actually possible, but not the probabilities of
these sequences). Note that a Hidden Markov model
consists of an internal D-order Markov process that
is observed only by a function of its internal-state
sequence. This is analogous to so3c shifts that are ob-
tained by a labelling function on the edge of a graph,
which otherwise denotes a 3nite-type shift. Thus, in
these terms, an �-machine infers the Hidden Markov
Model (so3c shift) for the observed process. In
contrast, the D-Markov Model proposed in this paper
infers a (3nite-type shift) approximation of the (so3c
shift) �-machine.

5. Anomaly measure and detection

The machines described in Sections 4.1 and 4.2 rec-
ognize patterns in the behavior of a dynamical system
that undergoes anomalous behavior. In order to quan-
tify changes in the patterns that are representations of
evolving anomalies, we induce an anomaly measure
on these machines, denoted byM. The anomaly mea-
sure M can be constructed based on the following
information-theoretic quantities: entropy rate, excess
entropy, and complexity measure of a symbol string
S (see Appendix A).

• The entropy rate h�(S) quanti3es the intrinsic ran-
domness in the observed dynamical process.

• The excess entropy E(S) quanti3es the memory in
the observed process.

• The statistical complexity C�(S) of the state ma-
chine captures the average memory requirements
for modelling the complex behavior of a process.

Given two symbol strings S and S0, it is possible to
obtain a measure of anomaly by adopting any one of
the following three alternatives:

M(S;S0)) =




|h�(S) − h�(S0)|; or
|E(S) − E(S0)|; or
|C�(S) − C�(S0)|:
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Note that each of the anomaly measures, de3ned
above, is a pseudo metric [17]. For example, let us
consider two periodic processes with unequal periods,
represented byS andS0. For both processes, h� =0,
so thatM(S;S0) = 0 for the 3rst of the above three
options, even if S �=S0.
The above measures are obtained through scalar-

valued functions de3ned on a state machine and do
not exploit the rich algebraic structure represented in
the state machine. For example, the connection matrix
T associated with the �-machine (see Section 4.1),
can be treated as a vector representation of any possi-
ble anomalies in the dynamical system. The induced
2-norm of the diDerence between the T-matrices for
the two state machines can then be used as a measure
of anomaly, i.e., M(S;S0) = ‖T − T0‖2. Such a
measure, used in [21], was found to be eDective. How-
ever, there is some subtlety in using this measure on
�-machines, because �-machines do not guarantee that
the machines formulated from the symbol sequences
S and S0 have the same number of states; and these
states do not necessarily have similar physical sig-
ni3cance. In general, T and T0 may have diDerent
dimensions and diDerent physical signi3cance. How-
ever, by encoding the causal states, T could be em-
bedded in a larger matrix, and an induced norm of the
diDerence betweenTmatrices for these two machines
can be de3ned. Alternatively, a (vector) measure of
anomaly can be derived directly from the stochastic
matrix T as the left eigenvector p corresponding to
the unit eigenvalue ofT, which is the state probabil-
ity vector under a stationary condition.
This paper has adopted the D-Markov machine ap-

proach, described in the Section 4.2 to build the state
machines. Since D-Markov machines have a 3xed
state structure, the state probability vector p associated
with the state machine have been used for a vector
representation of anomalies, leading to the anomaly
measure M(S;S0)) as a distance function between
the respective probability vectors p and p0 (that are
of identical dimensions), or any other appropriate
functional.

5.1. Anomaly detection procedure

Having discussed various tools and techniques, this
section outlines the steps of the forward problem and
the inverse problem described in Section 1. Following

are the steps for the forward problem:

(F1) Selection of an appropriate set of input stimuli.
(F2) Signal–noise separation, time interval selection,

and phase-space construction.
(F3) Choice of a phase space partitioning to generate

symbol alphabet and symbol sequences.
(F4) State Machine construction using generated sym-

bol sequence(s) and determining the connection
matrix.

(F5) Selection of an appropriate metric for the
anomaly measureM.

(F6) Formulation and calibration of a (possibly
non-parametric) relation between the computed
anomaly measure and known physical anomaly
under which the time-series data were collected
at diDerent (slow-time) epochs.

Following are the steps for the inverse problem:

(I1) Excitation with known input stimuli selected in
the forward problem.

(I2) Generation of the stationary behavior as
time-series data for each input stimulus at dif-
ferent (slow-time) epochs.

(I3) Embedding the time-series data in the phase
space determined for the corresponding input
stimuli in Step F2 of the forward problem.

(I4) Generation of the symbol sequence using the
same phase-space partition as in Step F3 of the
forward problem.

(I5) State Machine construction using the symbol se-
quence and determining the anomaly measure.

(I6) Detection and identi3cation of an anomaly, if
any, based on the computed anomaly measure
and the relation derived in Step F6 of the forward
problem.

6. Application to an active electronic circuit

This section illustrates an application of the
D-Markov machine concept for anomaly detection
on an experimental apparatus that consists of an ac-
tive electronic circuit. The apparatus implements a
second-order non-autonomous, forced Du7ng equa-
tion in real time [23]. The governing equation with
a cubic nonlinearity in one of the state variables is
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Fig. 3. Phase plots for electronic circuit experiment.

given below:

d2x(t)
dt2

+ )(ts)
dx(t)
dt

+ x(t) + x3(t) = A cos!t: (14)

The dissipation parameter )(ts), realized in the form
of a resistance in the circuit, is made to vary in the
slow time scale ts and is treated as a constant in the fast
time scale t at which the dynamical system is excited.
The goal is to detect, at an early stage, changes in )(ts)
that are associated with the anomaly.
In the forward problem, the 3rst task is the selection

of appropriate input stimuli. For illustration purposes,
we have used the stimulus with amplitude A = 22:0
and frequency ! = 5:0 in this paper. Changes in the
stationary behavior of the electronic circuit take place
starting from ) ≈ 0:10 with signi3cant changes oc-
curring in the narrow range of 0:28¡)¡ 0:29. The
stationary behavior of the system response for this in-
put stimulus is obtained for several values of ) in the
range of 0.10–0.35.
The four plates in Fig. 3 exhibit four phase plots

for the values of the parameter ) at 0.10, 0.27, 0.28,
and 0.29, respectively, relating the phase variable of
electrical charge that is proportional to the voltage
across one of the capacitors in the electronic circuit,
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Fig. 4. Time plots for electronic circuit experiment.

and its time derivative (i.e., the instantaneous cur-
rent). While a small diDerence between the plots for
)=0:10 and 0.27 is observed, there is no clearly visi-
ble diDerence between the plots for )=0:27 and 0.28
in Fig. 3. However, the phase plots for ) = 0:28 and
0.29 display a very large diDerence indicating period
doubling possibly due to onset of bifurcation. Fig. 4
displays time responses of the stationary behavior of
the phase variable for diDerent values of the parameter
) corresponding to the phase plots in Fig. 3. The plots
in Fig. 4 are phase-aligned for better visibility. (Note
that the proposed anomaly detection method does not
require phase alignment; equivalently, the 3nite-state
machine Fig. 2 can be started from any arbitrary
state corresponding to no speci3c initial condition.)
While the time responses for ) = 0:27 and 0.28 are
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indistinguishable, there is a small diDerence between
those for )=0:27 and 0.10. Similar to the phase plots
in Fig. 3, the time responses for ) = 0:28 and 0.29
display existence of period doubling due to a possible
bifurcation.
Additional exogenous stimuli have been identi3ed,

which also lead to signi3cant changes in the station-
ary behavior of the electronic system dynamics for
other ranges of ). For example, with the same ampli-
tude A= 22:0, stimuli at the excitation frequencies of
! = 2:0 and ! = 1:67 (not shown in Figs. 3 and 4)
detect small changes in the ranges of 0:18¡)¡ 0:20
and 0:11¡)¡ 0:12, respectively [21]. These ob-
servations reveal that exogenous stimuli at diDerent
excitation frequencies can be eDectively used for
detection of small changes in ) over an operating
range (e.g., 0:10¡)¡ 0:35).
Having obtained the phase plots from the time-series

data, the next step is to 3nd a partition of the phase
space for symbol sequence generation. This is a
di7cult task especially if the time-series data is
noise-contaminated. Several methods of phase-space
partitioning have been suggested in literature (for
example, [1,8,13]). Apparently, there exist no
well-established procedure for phase-space partition-
ing of complex dynamical systems; this is a subject
of active research. In this paper, we have introduced
a new concept of symbol sequence generation, which
uses wavelet transform to convert the time-series
data to time-frequency data for generating the symbol
sequence. The graphs of wavelet coe7cients ver-
sus scale at selected time shifts are stacked starting
with the smallest value of scale and ending with its
largest value and then back from the largest value
to the smallest value of the scale at the next in-
stant of time shift. The resulting scale series data
in the wavelet space is analogous to the time-series
data in the phase space. Then, the wavelet space
is partitioned into segments of coe7cients on the
ordinate separated by horizontal lines. The number
of segments in a partition is equal to the size of
the alphabet and each partition is associated with a
symbol in the alphabet. For a given stimulus, parti-
tioning of the wavelet space must remain invariant
at all epochs of the slow time scale. Nevertheless,
for diDerent stimuli, the partitioning could be chosen
diDerently. (The concept of proposed wavelet-space
partitioning would require signi3cant theoretical

research before its acceptance for application to a
general class of dynamical systems for anomaly de-
tection; and its e7cacy needs to be compared with
that of existing phase-space partitioning methods such
as false nearest neighbor partitioning [13].)
The procedure, described in the subsection IV-B

constructs a D-Markov machine and obtains the con-
nection matrixT and the state vector p from the sym-
bol sequence corresponding to each ). For this anal-
ysis, the wave space generated from each data set
has been partitioned into eight (8) segments, which
makes the alphabet size |A|=8 to generate symbol se-
quences from the scale series data. At each value of ),
the generated symbol sequence has been used to con-
struct several D-Markov Machines starting with D=1
and higher integers. It is observed that, the dominant
probabilities of the state vector (albeit having diDer-
ent dimensions) for diDerent values of D are virtually
similar. Therefore, a 3xed-structure D-Markov Ma-
chine with alphabet size |A| = 8 and depth D = 1,
which yields the number of states |A|D =8, is chosen
to generate state probability (p) vectors for the sym-
bol sequences.
The electronic circuit system is assumed to be at

the nominal condition for the dissipation parameter
) = 0:10, which is selected as the reference point
for calculating the anomaly measure. The anomaly
measureM is computed based on two diDerent com-
putation methods as discussed in Section 5. Fig. 5
exhibits three plots of the normalized anomaly mea-
sure M versus the dissipation parameter ), where
M is computed based on diDerent metrics. In each

 

Fig. 5. Anomaly measure versus parameter ).
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case, the reference point of nominal condition is rep-
resented by the parameter ) = 0:10. The 3rst plot,
shown in solid line, showsM expressed as the angle
(in radians) between the p vectors of the state ma-
chines under nominal and anomalous conditions, i.e.,
M =“(pref ; p) ≡ cos−1( |〈pref ;p〉|

‖pref‖‘2‖p‖‘2 ). The remain-
ing two plots, one in dashed line and the other in dot-
ted line, show the anomaly measure expressed as the
‘1-norm and ‘2-norm of the diDerence between the
p vectors of the state machines under nominal and
an anomalous conditions, i.e., M = ‖pref − p‖‘1 and
M = ‖pref − p‖‘2, respectively. In each of the three
plots, M is normalized to unity for better compari-
son. All three plots in Fig. 5 show gradual increase
in the anomaly measure M for ) in the approximate
range of 0.10–0.25. At ) ≈ 0:25 and onwards, M
starts increasing at a faster rate and 3nally saturates
at )¿ 0:29. The large values of anomaly measure at
) = 0:29 and beyond indicate the occurrence of pe-
riod reduction as seen in Figs. 3 and 4. This abrupt
disruption, preceded by gradual changes, is analogous
to a phase transition in the thermodynamic sense [4],
which can also be interpreted as a catastrophic disrup-
tion in a physical process. Hence, observation of mod-
est changes in the anomaly measure may provide very
early warnings for a forthcoming catastrophic failure
as indicated by the gradual change in the )−M curve.
Following the steps (I1)–(I5) of the inverse prob-

lem in Section 5.1, the state probability vector p can be
obtained for the stationary behavior under the known
stimulus. The a priori information on the anomaly
measure, generated in the step F6 of the forward prob-
lem in the Section 5.1, can then be used to determine
the possible range in which ) lies. Solutions of the for-
ward problem can generate more information on dif-
ferent ranges of ) under diDerent input stimuli. Thus,
the range of the unknown parameter ) can be further
narrowed down by repeating this step for other known
stimuli as reported earlier [21]. This ensemble of in-
formation provides inputs for the inverse problem for
detecting anomalies based on the sensor data collected
in real time, during the operation of machineries.

7. Summary and conclusions

This paper presents a novel concept of anomaly
detection in complex systems based on the tools of

Symbolic Dynamics, Finite State Automata, and Pat-
tern Recognition. It is assumed that dynamical sys-
tems under consideration exhibit nonlinear dynami-
cal behavior on two time scales. Anomalies occur
on a slow time scale that is (possibly) several or-
ders of magnitude larger than the fast time scale of
the system dynamics. It is also assumed that the un-
forced dynamical system (i.e., in the absence of ex-
ternal stimuli) is stationary at the fast time scale and
that any non-stationary behavior is observable only on
the slow time scale. This concept of small change de-
tection in dynamical systems is elucidated on an ac-
tive electronic circuit representing the forced Du7ng
equation with a slowly varying dissipation parameter.
The time-series data of stationary phase trajectories
are collected to create the respective symbolic dynam-
ics (i.e., symbol sequences) using wavelet transform.
The resulting state probability vector of the transition
matrix is considered as the vector representation of
a phase trajectory’s stationary behavior. The distance
between any two such vectors under the same stimu-
lus is the measure of anomaly that the system has been
subjected to. This vector representation of anomalies
is more powerful than a scalar measure. The major
conclusion of this research is that Symbolic Dynam-
ics along with the stimulus-response methodology and
having a vector representation of anomaly is eDective
for early detection of small anomalies.
The D-Markov machine, proposed for anomaly

detection, is a suboptimal approximation of the
�-machine. It is important that this approximation is
a su7ciently accurate representation of the nominal
behavior. Research in this direction is in progress and
the results will be presented in a forthcoming publi-
cation. Further theoretical research is recommended
in the following areas:

• Separation of information-bearing part of the signal
from noise.

• Identi3cation of a relevant submanifold of the phase
space and its partitioning to generate a symbol al-
phabet.

• Identi3cation of appropriate wavelet basis functions
for symbol generation and construction of a map-
ping from the wavelet space to the symbol space.

• Selection of the minimal D for the D-Markov ma-
chine and identi3cation of the irreducible submatrix
of the state transition matrix that contains relevant
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information on anomalous behavior of the
dynamical system.
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Appendix A. Information theoretic quantities

This appendix introduces the concepts of standard
information-theoretic quantities: entropy rate, excess
entropy and statistical complexity [11], which are
used to establish the anomaly measure in Section 5.
Entropy rate (h�): The entropy rate of a symbol

string S is given by the Shannon entropy as follows:

h� = lim
L→∞

H [L]
L

; (A.1)

where H [L] ≡ −∑
sL∈A L P(sL) log2(P(s

L)) is the
Shannon entropy of all L-blocks (i.e., symbol se-
quences of length L) in S. The limit is guaranteed
to exist for a stationary process [5]. The entropy rate
quanti3es the irreducible randomness in sequences
produced by a source: the randomness that remains
after the correlation and the structures in longer and
longer sequence blocks are taken into account. For
a symbol string S represented as an �-machine,

h� = H [
→
S 1|S].

Excess entropy (E): The excess entropy of a sym-
bol string S is de3ned as

E=
∞∑
L=1

[h�(L) − h�] (A.2)

where h�(L) ≡ H [L]−H [L−1] is the estimate of how
random the source appears if only L-blocks in S are
considered. Excess entropy measures how much addi-
tional information must be gained about the sequence

in order to reveal the actual per-symbol uncertainty h�,
and thus measures di7culty in the prediction of the
process. Excess entropy has alternate interpretations
such as: it is the intrinsic redundancy in the process;
geometrically it is a sub-extensive part of H (L); and
it represents how much historical information stored
in the present is communicated to the future.
Statistical complexity (C�) [11]: The information

of the probability distribution of causal states, as
measured by Shannon entropy, yields the minimum
average amount of memory needed to predict future
con3gurations. This quantity is the statistical com-
plexity of a symbol string S, de3ned by Crutch3eld
and Young [7] as

C� ≡ H (S) = −
n−1∑
k=0

[Pr(Sk) log2Pr(Sk)]; (A.4)

where n is the number of states of the 3nite-state ma-
chine constructed from the symbol stringS. As shown
in [11], E6C� in general, and C� = E+ Dh�.

Appendix B. Finite-type shift and so�c shift

This appendix very brieEy introduces the concept
of shift spaces with emphasis on 3nite shifts and so3c
shifts that respectively characterize theD-Markov ma-
chine and the �-machine described in the Section 4.4.
The shift space formalism is a systematic way to study
the properties of the underlying grammar, which rep-
resent the behavior of dynamical systems encoded
through symbolic dynamics. The diDerent shift spaces
provide increasingly powerful classes of models that
can be used to represent the patterns in the dynamical
behavior.

De�nition 2.1. Let A be a 3nite alphabet. The full
A-shift is the collection of all bi-in3nite sequences of
symbols from A and is denoted by:

AZ = {x = (xi)i∈Z : xi ∈A ∀i∈Z}: (A.5)

De�nition 2.2. The shift map / on the full shift AZ

maps a point x to a point y=/(x) whose ith coordinate
is yi = xi+1.

A block is a 3nite sequence of symbols overA. Let
x∈AZ and w be a block overA. Then w occurs in x
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if ∃ indices i and j such that w = x[i; j] = xixi+1 · · · xj.
Note that the empty block � occurs in every x.
LetF be a collection of blocks, i.e., 3nite sequences

of symbols overA. Let x∈AZ and w be a block over
A. Then w occurs in x if ∃ indices i and j such that
w= x[i; j] = xixi+1 · · · xj. For any suchF, let us de3ne
XF to be the subset of sequences inAZ , which do not
contain any block in F.

De�nition 2.3. A shift space is a subset X of a full
shiftAZ such that X = XF for some collectionF of
forbidden blocks over A.

For a given shift space, the collectionF is at most
countable (i.e., 3nite or countably in3nite) and is
non-unique (i.e., there may be many such F’s de-
scribing the shift space). As subshifts of full shifts,
these spaces share a common feature called shift in-
variance. Since the constraints on points are given in
terms of forbidden blocks alone and do not involve
the coordinate at which a block might be forbidden, it
follows that if x∈XF, then so are its shifts /(x) and
/−1(x). Therefore /(XF) =XF, which is a necessary
condition for a subset ofAZ to be a shift space. This
property introduces the concept of shift dynamical
systems.

De�nition 2.4. Let X be a shift space and /X :X →
X be the shift map. Then (X; /X ) is known as a shift
dynamical system.

The shift dynamical system mirrors the dynamics
of the original dynamical system from which it is gen-
erated (by symbolic dynamics). Several examples of
shift spaces are given in [15].
Rather than describing a shift space by specify-

ing the forbidden blocks, it can also be speci3ed by
allowed blocks. This leads to the notion of a language
of a shift.

De�nition 2.5. Let X be a subset of a full shift, and
let Bn(X ) denote the set of all n-blocks (i.e., blocks
of length n) that occur in X . The language of the shift
space X is de3ned as:

B(X ) =
∞⋃
n=0

Bn(X ): (A.6)

Sliding block codes: Let X be a shift space overA,
then x∈X can be transformed into a new sequence y=
· · ·y−1y0y1 · · · over another alphabet U as follows.
Fix integers m and n such that −m6 n. To compute
yi of the transformed sequence, we use a function 2
that depends on the “window” of coordinates of x from
i − m to i + n. Here 2 :Bm+n+1(X ) → U is a 3xed
block map, called a (m+ n+ 1)-block map from the
allowed (m + n + 1)-blocks in X to symbols in U.
Therefore,

yi = 2(xi−mxi−m+1 · · · xi+n) = 2(x[i−m; i+n]): (A.7)

De�nition 2.6. Let 2 be a block map as de3ned in
Eq. (A.7). Then the map 3 :X → (U)Z de3ned by
y = 3(x) with yi given by Eq. (A.7) is called the
sliding block code with memory m and anticipation n
induced by 2.

De�nition 2.7. Let X and Y be shift spaces, and 3 :
X → Y be a sliding block code.

• If 3 :X → Y is onto, then 3 is called a factor code
from X onto Y .

• If 3 :X → Y is one-to-one, then 3 is called an
embedding of X into Y .

• If 3 :X → Y has a inverse (i.e., ∃ a sliding block
code  :Y → X such that  (3(x)) = x ∀x∈X and
3( (y))=y ∀ y∈Y ), then 3 is called a conjugacy
from X to Y .

If ∃ a conjugacy from X to Y , then Y can be viewed
as a copy of X , sharing all properties of X . Therefore,
a conjugacy is often called topological conjugacy in
literature.
Finite-type shifts: We now introduce the concept of

3nite-type shift that is the structure of the shift space
in the D-Markov machine proposed in the Section 4.2.

De�nition 2.8. A 4nite-type shift is a shift space that
can be described by a 3nite collection of forbidden
blocks (i.e., X having the form XF for some 3nite set
F of blocks).

An example of a 3nite shift is the golden mean shift,
where the alphabet is 6={0; 1} and the forbidden set
F = {11}. That is, X = XF is the set of all binary
sequences with no two consecutive 1’s.
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De�nition 2.9. A 3nite-type shift is M -step or has
memory M if it can be described by a collection of
forbidden blocks all of which have length M + 1.

The properties of a 3nite-type shift are listed below:

• If X is a 3nite-type shift, then ∃M¿ 0 such that X
is M -step.

• The language of the 3nite-type shift is characterized
by the property that if two words overlap, then they
can be glued together along their overlap to from
another word in the language. Thus, a shift space
X is an M -step 3nite-type shift iD whenever uv,
vw∈B(X ) and |v|¿M , then uvw∈B(X ).

• A shift space that is conjugate to a 3nite-type shift
is itself a 3nite-type shift.

• A 3nite-type shift can be represented by a 3nite,
directed graph and produces the collection of all
bi-in3nite walks (i.e. sequence of edges) on the
graph.

So4c shifts: The so3c shift is the structure of the
shift space in the �-machines [7,20] in Section 4.1.
Let us label the edges of a graph with symbols from
an alphabetA, where two or more edges are allowed
to have the same label. Every bi-in3nite walk on the
graph yields a point inAZ by reading the labels of its
edges, and the set of all such points is called a so4c
shift.

De�nition 2.10. A graph G consists of a 3nite set
V=V(G) of vertices together with a 3nite set E =
E(G) of edges. Each edge e∈E(G) starts at a vertex
denoted by i(e)∈V(G) and terminates at a vertex
t(e)∈V(G) (which can be the same as i(e)). There
may be more that one edge between a given initial
state and terminal state; a set of such edges is called
a set of multiple edges. An edge e with i(e) = t(e) is
called a self-loop.

De�nition 2.11. A labelled graph G is a pair (G;L),
where G is a graph with edge set E, and L :E → A
assigns a label L(e) to each edge e of G from the
3nite alphabet A. The underlying graph of G is G.

De�nition 2.12. A subset X of a full shift is a
so4c shift if X = XG for some labelled graph G. A

presentation of a so3c shift X is a labelled graph G
for which XG = X .

An example of a so3c shift is the even shift, which is
the set of all binary sequences with only even number
of 0’s between any two 1’s. That is, the forbidden set
F is the collection {102n+1: n¿ 0}.
Some of the salient characterization of so3c shifts

are presented below [15]:

• Every 3nite-type shift quali3es as a so3c shift.
• A shift space is so3c iD it is a factor of a 3nite-type
shift.

• The class of so3c shifts is the smallest collection
of shifts spaces that contains all 3nite-type shifts
and also contains all factors of each space in the
collection.

• A so3c shift that does not have 3nite-type subshifts
is called a strictly so4c. For example, the even shift
is strictly so3c [15].

• A factor of a so3c shift is a so3c shift.
• A shift space conjugate to a so3c shift is itself so3c.
• A distinction between 3nite-type shifts and so3c
shifts can be characterized in terms of the memory.
While 3nite-type shifts use 3nite-length memory,
so3c shifts require 3nite amount of memory. In
contrast, context-free shifts require in3nite amount
of memory [12].
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Abstract

Symbolic time series analysis (STSA) of complex systems for anomaly detection has been recently introduced in

literature. An important feature of the STSA method is extraction of relevant information, imbedded in the measured time

series data, to generate symbol sequences. This paper presents a wavelet-based partitioning approach for symbol

generation, instead of the currently practiced method of phase-space partitioning. Various aspects of the proposed

technique, such as wavelet selection, noise mitigation, and robustness to spurious disturbances, are discussed. The wavelet-

based partitioning in STSA is experimentally validated on laboratory apparatuses for anomaly/damage detection. Its

efficacy is investigated by comparison with phase-space partitioning.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Symbolic time series analysis; Wavelets; Fault detection
1. Introduction

The concept of symbolic time series analysis
(STSA) has been recently proposed for anomaly
detection in complex systems [1]. Several case
studies [2–5] in anomaly detection show that STSA

can be more effective than existing pattern recogni-
tion techniques (e.g., principal component analysis
and neural networks). The STSA method has also
been demonstrated for fault detection in electro-
mechanical systems, such as three-phase induction
motors [6] and helical gearbox in rotorcraft [7].
e front matter r 2006 Elsevier B.V. All rights reserved
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A crucial step in STSA is extraction of relevant
information, imbedded in the measured time series
data, to generate symbol sequences. Symbol gen-
eration requires partitioning of the data space to
obtain the symbol sequences [8,9]. Various parti-
tioning techniques have been suggested in literature
for symbol generation, which include variance-
based [10], entropy-based [11], and hierarchical
clustering [12] methods. A survey of clustering
techniques is provided in [13]. In addition to these
methods, another scheme of partitioning, based on
symbolic false nearest neighbors (SFNN), was
reported by Kennel and Buhl [14]. The objective
of SFNN partitioning is to ensure that points
that are close to each other in the symbol space are
also close to each other in the phase space.
Partitions that yield a smaller proportion of
SFNN are considered optimal. However, this
partitioning method may become computationally
.

www.elsevier.com/locate/sigpro
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very expensive if the dimension of the phase space is
large or if the data set is contaminated by noise,
since noise induces false symbols.

Partitioning of wavelet-transformed data poten-
tially alleviates the above-mentioned shortcomings
and is particularly effective with noisy data from
high-dimensional dynamical systems. Usage of
wavelet transform for symbolization has been
recently introduced by the authors [1,15]. This
paper elaborates the concept of wavelet-based
partitioning for STSA and its major features are
delineated below.
�
 Selection of the wavelet basis and scale range.

�
 Noise mitigation in the measured time series data
prior to symbol generation.

�
 Robustness of extracted information from sym-
bol sequences.

�
 Enhancement of computational efficiency for
anomaly detection.

�
 Validation of the STSA method on laboratory
apparatuses for anomaly/damage detection.

The paper is organized into six sections including
the present section. Section 2 focuses on key
technical aspects of wavelet analysis such as
selection of wavelet basis and scales. Section 3
presents the maximum entropy method of partition-
ing the space of wavelet coefficients. Section 4
elucidates the underlying principles of wavelet-
based partitioning via simulation examples. Section
5 presents experimental results on laboratory
apparatuses to demonstrate efficacy of wavelet-
based STSA for anomaly detection. Section 6
summarizes the paper and makes major conclusions
along with recommendations for future research.

2. Wavelet analysis of time series data

This section presents generation of wavelet
coefficients from measured time series data, and
their arrangement for symbol generation. Specifi-
cally, issues of wavelet basis and scale range
selection are addressed.

Preprocessing of time series data is often neces-
sary for extraction of pertinent information. Fourier
analysis is sufficient if the signal to be analyzed is
stationary and if the time period is accurately
known. However, Fourier analysis may not be
appropriate if the signal has non-stationary char-
acteristics such as drifts, abrupt asynchronous
changes, and frequency trends. Wavelet analysis
alleviates these difficulties via adaptive usage of long
windows for retrieving low-frequency information
and short windows for high-frequency information
[16,17]. The ability to perform flexible localized
analysis is one of the striking features of wavelet
transform.

In multi-resolution analysis (MRA) of wavelet
transform, a continuous signal f 2 H, where H is a
Hilbert space, is decomposed as a linear combina-
tion of time translations of scaled versions of a
suitably chosen scaling function fðtÞ and the derived
wavelet function cðtÞ. Let the sequence ffj;kg belong
to another Hilbert space M with a countable
measure, where the scale s ¼ 2j and time translation
t ¼ 2�jk. If the sequence ffj;kg is a frame for the
Hilbert space H with a frame representation
operator L, then there are positive real scalars A

and B such that

Akf k2HpkLf k2MpBkf k2H 8f 2 H, (1)

where Lf ¼ fhf ;fj;kig and kLf kM is an appropriate

norm, e.g., kLf kM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j

P
kjhf ;fj;kij

2
q

is a candi-

date norm; and hx; yi is the inner product of x and y,
both belonging to H.

The above relationship is a norm equivalence
and represents the degree of coherence of the signal
f with respect to the frame set of scaling functions; it
may be interpreted as enforcing an approximate
energy transfer between the domains H and LðHÞ.
In other words, for all signals f 2 H, a scaled
amount of energy is distributed in the coefficient
domain where the scale factor lies between A and B

[16]. However, the energy distribution is dependent
on the signal’s degree of coherence with the under-
lying frame ffj;kg. For a signal f, which is coherent
with respect to the frame ffj;kg, norm equivalence in
the frame representation necessarily implies that a
few coefficients contain most of the signal energy
and hence have relatively large magnitudes. Simi-
larly, pure noise signal w being incoherent with
respect to the set ffj;kg, must have a frame
representation in which the noise energy is spread
out over a large number of coefficients. Conse-
quently, these coefficients have a relatively small
magnitude [17].

Let ~f be a noise corrupted version of the original
signal f expressed as

~f ¼ f þ sw, (2)

where w is additive white gaussian noise with zero
mean and unit variance and s is the noise level.
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Then, the inner product of ~f and fj;k is obtained as

h ~f ;fj;ki ¼ hf ;fj;ki|fflfflfflffl{zfflfflfflffl}
signal part

þs hw;fj;ki|fflfflfflffl{zfflfflfflffl}
noise part

. (3)

The noise part in Eq. (3) may further be reduced if
the scales over which coefficients are obtained are
properly chosen.

For every wavelet, there exists a certain frequency
called the center frequency F c that has the
maximum modulus in the Fourier transform of
the wavelet [18]. The pseudo-frequency f p of the
wavelet at a particular scale a is given by the
following formula [18,19]:

f p ¼
F c

aDt
, (4)

where Dt is the sampling interval. Fig. 1 depicts the
center frequency associated with the Daubechies 4
wavelet ‘db4’ [16,20].

The power spectral density (PSD) of the signal
provides the information about the frequency
content of the signal. This information along with
Eq. (4) can be used for scale selection. The
procedure of selecting the scales is summarized
below:
�
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Identification of the frequencies of interest
through PSD analysis of time series data.

�
 Substitution of the above frequencies in place of

f p in Eq. (4) to obtain the respective scales in
terms of the known parameters F c and Dt.

The wavelet coefficients of the signal are sig-
nificantly large when the pseudo-frequency f p of the
wavelet corresponds to the locally dominant fre-
quencies in the underlying signal. Example 1 in
Section 4 illustrates how the choice of wavelet and
scale affect the coefficients. Examples 2 and 3
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Fig. 1. Center frequency approximation for wavelet db4.
illustrate noise suppression and robustness. Three
experimental studies in Section 5 illustrate enhance-
ment of anomaly/damage detection using STSA and
make comparisons of wavelet-based partitioning
and SFNN phase-space partitioning in this regard.

Upon selection of the wavelet basis and scale
range, the wavelet coefficients are obtained. These
coefficients are stacked at selected time-shift posi-
tions, starting with the smallest value of scale and
ending with its largest value and then back from the
largest value to the smallest value of the scale at the
next instant of time shift. In the sequel, this one-
dimensional array of arranged wavelet coefficients is
called the scale series data, which is structurally
similar to time series data in the phase space. For
symbol generation, the scale series data can be
handled in a similar way as time series data.

3. Symbolization of scale series data

This section presents symbolization of wavelet
coefficients by maximum entropy partitioning. The
scale series data are partitioned to construct the
symbol alphabet and to generate symbol sequences.

In the wavelet-based partitioning scheme, as
introduced in an earlier publication [1], the max-
imum and minimum of the scale series are evaluated
and the ordinates between the maximum and
minimum are divided into equal-sized regions.
These regions are mutually disjoint and thus form
a partition. Each region is then labelled with one
symbol from the alphabet. If the data point lies in a
particular region, it is coded with the symbol
associated with that region. Thus, a sequence of
symbols is created from a given sequence of scale
series data. This type of partitioning is called
uniform partitioning in the sequel. The left-hand
plot in Fig. 2 depicts uniform partitioning of noise
contaminated signal sinð2ptÞ with alphabet size
jSj ¼ 4. Note that the partition segments are of
equal size.

Intuitively, it is more reasonable if the informa-
tion-rich regions of the data set are partitioned finer
and those with sparse information are partitioned
coarser. To achieve this objective, a partitioning
method is adopted such that the entropy of the
generated symbol sequence is maximized [15].
Maximum entropy partitioning is abbreviated as
ME partitioning in the sequel. The procedure for
obtaining an ME partition is described below.

Let N be the length of the data set and jSj be the
size of the symbol alphabet (i.e., the number of
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Fig. 2. Examples of uniform and ME partitioning with jSj ¼ 4.
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disjoint elements in the partition). The data set is
sorted in ascending order. Starting from the first
point in the sorted data, every consecutive data
segment of length bN=jSjc forms a distinct element
of the partition, where bxc represents the greatest
integer less than or equal to x.

The right-hand plot in Fig. 2 shows ME partition-
ing for the noise-contaminated signal sinð2ptÞ with
jSj ¼ 4. As expected, the size of the partitions are not
equal, but the probabilities of the symbols are equal.
Variations in data patterns are more likely to be
reflected in the symbol sequence obtained under ME

partitioning than other partitioning.
The choice of the alphabet size jSj plays a crucial

role in STSA. For example, a small value of jSj may
prove inadequate for capturing the characteristics of
the scale series data. On the other hand, a large
value of jSj may lead to redundancy and waste of
computational resources.

Selection of the alphabet size jSj is an area of
active research; an entropy-based approach has
been adopted for selecting jSj in this paper. Let
HðkÞ denote the Shannon entropy of the symbol
sequence obtained by partitioning the data set with
k symbols:

HðkÞ ¼ �
Xi¼k

i¼1

pi log2 pi, (5)

where pi represents the probability of occurrence of
the symbol si. Note that Hð1Þ ¼ 0 because pi ¼ 0 or
1 with i ¼ 1. If the underlying data set has sufficient
information content, then the entropy achieved
under ME partitioning would be log2ðkÞ, which
corresponds to the uniform distribution. We define
a quantity hð�Þ to represent the change in entropy
with respect to the number jSj of symbols as

hðkÞ9HðkÞ �Hðk � 1Þ 8kX2. (6)

The algorithm for alphabet size selection is given
below.

Step 1: Set k ¼ 2. Choose a threshold �h, where
0o�h51.

Step 2: Sort the data set (of length N) in the
ascending order.

Step 3: Every consecutive segment of length
bN=kc in the sorted data set (of length N) forms a
distinct element of the partition.

Step 4: Convert the raw data into a symbol
sequence with the partitions obtained in Step 3. If
the data point lies within or on the lower bound of a
partition, it is coded with the symbol associated
with that partition.

Step 5: Compute the symbol probabilities pi,
i ¼ 1,2,y, k.

Step 6: Compute HðkÞ ¼ �
Pi¼k

i¼1pi log2pi and
hðkÞ ¼ HðkÞ �Hðk � 1Þ.

Step 7: If hðkÞo�h, then exit; else increment k by 1
and go to Step 3.

In general, a small �h leads to a large size of the
symbol alphabet, resulting in increased computa-
tion. Also, a larger alphabet makes the partitioning
finer. This might increase the probability of false
symbols being induced by noise. On the other hand,
a large �h leads to a small alphabet size that
may prove inadequate for capturing the pertinent
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information. Hence, there is a trade-off between
accuracy and computational speed when �h is
chosen. The variance of the noise process associated
with the signal may serve as a guideline for selection
of �h.

4. Validation of wavelet-based partitioning

This section presents simulation cases to validate
symbolization of measured time series data via
partitioning of the wavelet coefficients. The under-
lying concepts are illustrated by three examples.

4.1. Example 1: choice of wavelet parameters

This example illustrates how the choice of wavelet
basis and scale range affects the coefficients that, in
turn, determine symbol generation for anomaly
detection [1]. Let us consider the following sinusoi-
dal signal:

yðtÞ ¼ cosð2ptÞ 8t 2 ½�5;þ5�. (7)

The frequency of yðtÞ in Eq. (7) is 1.00Hz. The
Gaussian wavelet 9 (‘gaus9’) (see [20, p. 74])
matches the shape of yðtÞ well, as seen in Fig. 3
that compares an appropriately scaled and trans-
lated version of the ‘gaus9’ wavelet with the
signal yðtÞ.

To demonstrate the impact of the chosen wavelet
parameters on the coefficients, the wavelet basis
‘db1’ is also considered for comparison purposes.
The signal yðtÞ is sampled at 100Hz (i.e., the
sampling interval Dt ¼ 0:01 s). The wavelet coeffi-
cients of the signal yðtÞ are obtained for various
scales with both wavelets, ‘gaus9’ and ‘db1’. The
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Fig. 3. Comparison of the wavelet basis ‘gaus9’ and the signal.
norm of the coefficients corresponding to each scale
and the pseudo-frequencies of the wavelet corre-
sponding to the chosen scales are calculated. Fig. 4
shows the plot of the norm of coefficients and the
pseudo-frequencies of the wavelet.

It is observed in Fig. 4 that, for both wavelets
‘gaus9’ and ‘db1’, the maximum of the norm is
obtained at f p � 1:00Hz. In fact, it is exactly at
1.00Hz for ‘gaus9’. Furthermore, the value of the
peak norm achieved with ‘gaus9’ is appreciably
greater than that with wavelet ‘db1’. In other words,
the coefficients obtained with ‘gaus9’ are more
significant than those obtained with ‘db1’. Another
observation is that the norm curve for ‘gaus9’ shows
a greater rate of decay across pseudo-frequencies
than that of ‘db1’. More energy is concentrated in a
narrow band frequencies around 1.00Hz in the case
of ‘gaus9’. These observations imply that high
energy compaction can be achieved with fewer
coefficients if the wavelet and the scales are chosen
as stated in Section 2. A favorable implication of
fewer coefficients is fewer number of symbols for
analysis and hence an improvement in computa-
tional efficiency.

4.2. Example 2: noise suppression

This example demonstrates how noise suppres-
sion is achieved with wavelets. Let the signal yðtÞ in
Eq. (7) be corrupted with additive zero-mean white
Gaussian noise wðtÞ,

~yðtÞ ¼ yðtÞ þ swðtÞ. (8)

A common measure of noise in a noise-corrupted
signal is the signal-to-noise ratio (SNR) that is
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Table 1

SNR values

s ¼ 0:05 s ¼ 0:1

SNR 191.55 50.89gSNR 25195 4281.5
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defined as:

SNR 9
kyk2H
ks wk2H

, (9)

where y and w are functions of time. Similar to
Eq. (9), the SNR in the wavelet domain is defined as

gSNR9
kLyk2M
ks Lwk2M

, (10)

where Ly and Lw, which belong to the Hilbert space
M (see Section 2), represent the wavelet coefficients
of the signal y and the noise w.

Numerical experiments have been performed with
s 2 f0:05; 0:1g. The signal is sampled at 100Hz (i.e.,
Dt ¼ 0:01 s). The scales are determined following
Eq. (4), such that the pseudo-frequency of the
wavelet matches the frequency of the signal. Fig. 5
depicts the time domain plot (left plate) and
coefficient plot (right plate) of the signal y and
white Gaussian noise having standard deviation
s ¼ 0:05. Similarly, Fig. 6 depicts the time domain
plot (left plate) and coefficient plot (right plate)
of the signal y and white Gaussian noise having
standard deviation s ¼ 0:10. Table 1 lists the
values of SNR and gSNR, averaged over 20
simulation runs.

Both Figs. 5 and 6 show that gSNR is significantly
larger than SNR. That is, the wavelet-transformed
signal is significantly de-noised relative to the time
domain signal. This is expected because the noise is
incoherent with the wavelet while the signal enjoys a
great degree of coherence with the wavelet. Thus,
symbols generated from wavelet coefficients would
reflect the characteristics of the signal with more
fidelity than those obtained with time domain
signals.
4.3. Example 3: robustness of symbol probability

vector

The symbolization scheme is developed to en-
hance real-time detection of slowly varying anoma-
lies in dynamical systems [1]. Of critical importance
is the symbol probability vector p whose elements
denote the probability of occurrence of individual
symbols in the symbol sequence. The vector p must
be robust relative to measurement noise and
spurious disturbances and, at the same time, be
sensitive enough to detect small slowly varying
anomalies from the observed data set. A distortion
measure for the symbol probability vector is
introduced below

dt9kpt � ~ptk1, (11)

where the subscript t denotes that the probability
vectors correspond to symbols generated from time
domain signals; and k � k1 is the sum of the absolute
values of the elements of the vector �. The vector pt,
with kptk1 ¼ 1, corresponds to the uncorrupted
signal and ~pt corresponds to the corrupted signal.
Similar to Eq. (11), distortion measure in the
wavelet scale domain is defined as

ds9kps � ~psk1, (12)

where the subscript s denotes that the probability
vectors correspond to symbols generated from
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wavelet scale domain signals (i.e., scale series data).
Therefore, lower is the distortion ratio, closer is the
probabilistic representation of the corrupted signal
to that of the uncorrupted signal, i.e., greater is the
robustness to noise and spurious disturbances.

The partitions are obtained, in case of time
domain, by employing the maximum entropy
criterion on the time series data of the signal. In
the wavelet domain, the partitions are obtained with
the corresponding scale series data, as defined in
Section 2. In both time domain and wavelet domain,
the probability vectors p and ~p are computed with
the same partitions for the uncorrupted and
corrupted signals.

The symbol alphabet size jSj is chosen to be 4 in
this example. The partitions are obtained as
mentioned before for the signal y and its transform,
i.e., the coefficient vector Ly. Table 2 lists the values
of distortion ratios dt and ds, averaged over 20
simulation runs.

It is seen that distortion measures are far smaller
in the wavelet scale domain than those in the time
domain. This observation implies that the symbol
probabilities are significantly more robust to mea-
surement noise and spurious disturbances in the
wavelet domain than in the time domain. Hence, it
may be inferred that symbols generated from the
wavelet coefficients would be better for anomaly
detection as the effects of noise to induce errors in
the symbol probabilities are significantly mitigated.

5. Experimental results on anomaly detection

This section evaluates the performance of wave-
let-based partitioning in STSA for anomaly/damage
detection. This is demonstrated via experimentation
on the following laboratory apparatuses:
�
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Anomaly detection on a nonlinear electronic
system apparatus [1].
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vibration system apparatus [3].
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Damage detection in polycrystalline alloys on a
fatigue testing apparatus [5].
ble 2

tortion ratios

s ¼ 0:05 s ¼ 0:1

0.040 0.054

0.006 0.010
5.1. Anomaly detection in nonlinear systems
This example demonstrates efficacy of the STSA

method for anomaly detection in nonlinear systems.
Experiments have been conducted on a laboratory
apparatus [1] that emulates the forced Duffing
equation [21], modelled as

d2y

dt2
þ b

dy

dt
þ yðtÞ þ y3ðtÞ ¼ A cosðOtÞ, (13)

where the dissipation parameter b varies slowly with
respect to the response of the dynamical system; b ¼
0:1 represents the nominal condition; and a change
in the value of b is considered as an anomaly. With
amplitude A ¼ 22:0 and O ¼ 5:0, a sharp change in
the behavior is noticed around b ¼ 0:29, possibly
due to bifurcation. The phase plots and time-
response plots, depicting this drastic change beha-
vior, are not presented here as they are provided in
an earlier publication [1].

The objective of anomaly detection is to identify
small changes in the parameter b as early as possible
and well before it manifests a drastic change in the
system dynamics. The details of the experimental
apparatus are provided in [22]. Time series data of
the signal yðtÞ from the experimental apparatus is
used for symbolic analysis.

The first step in the analysis is selection of the
wavelet basis. The time series data of the signal and
a scaled and translated version of the wavelet
‘gaus1’ are shown in the left-hand plate of Fig. 7.
For the purpose of comparison, the right-hand plate
of Fig. 7 shows the same time series data of the
signal and a scaled and translated version of the
wavelet ‘db1’ that was used in [1] for wavelet
analysis. Since ‘gaus1’ matches the shape of the
signal more closely than ‘db1’, the wavelet ‘gaus1’ is
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better suited for STSA of this data sequence than
‘db1’. Once the wavelet is chosen, the next step is
identification of the frequencies of interest. The top
and bottom plates of Fig. 8 depict the power spectra
of the system for b ¼ 0:1 and 0.29, respectively.

Fig. 8 shows that frequencies in the neighborhood
of 0.54Hz, though present at the nominal condition
b ¼ 0:10, are absent at b ¼ 0:29. The wavelet
coefficients at scales, corresponding to the pseudo-
frequency of 0.54Hz, would be smaller in magni-
tude in the anomalous condition(s) when compared
with those in the nominal condition. Hence, by
choosing scales that correspond to pseudo-frequen-
cies around 0.54Hz, early detection can be achieved
more effectively.

The next aspect of anomaly detection via STSA is
the choice of number of symbols, i.e., cardinality jSj
of the symbol alphabet S. The scale series data, at
the nominal condition, is partitioned into a symbol
sequence starting with jSj ¼ 2 and the threshold
parameter �h is chosen to be 0:2. Fig. 9 depicts the
change in entropy h versus the number of symbols
jSj. It is seen that h monotonically decreases with
jSj and becomes less than �h when jSj ¼ 8.
Accordingly, the number of symbols jSj is chosen
to be eight. A smaller value of �h results in increased
number of symbols, which would increase computa-
tion with (possibly) no significant gain in accuracy
of anomaly detection.

The partition is obtained using data obtained
under the nominal ðb ¼ 0:1Þ condition. Once the
partition is generated, it remains invariant. As the
dynamical behavior of the system changes due to
variations in b, the statistical characteristics of the
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Fig. 8. Power spectrum plots at nominal and anomalous

conditions.
symbol sequences are also altered and so do the
symbol probabilities. A measure could be induced
on the symbol probability vectors obtained under
different anomalous conditions, to quantify these
changes. Such a measure is called the anomaly
measure M. The metric Mk ¼ dðp0; pkÞ is an
anomaly measure, where p0 and pk represent the
symbol probability vectors under nominal and
anomalous conditions, respectively. A candidate
anomaly measure is the angle between the symbol
probability vectors under nominal and anomalous
conditions. This measure is defined as

Mk ¼ arccos
hp0; pki

kp0k2kpkk2

� �
, (14)

where hx; yi is the inner product of the vectors x and
y; and kxk2 is the Euclidean norm of x.

Fig. 10 compares the profiles of the anomaly
measures Mk in Eq. (14) obtained with wavelet
‘gaus1’ under ME partitioning and uniform parti-
tioning. With b increasing from 0.1, there is a
gradual increase in the anomaly measure much
before the abrupt change in the vicinity of b ¼ 0:29
takes place. This indicates growth of the anomaly
even before any notable change in the dynamical
behavior takes place. At this point, the anomaly
measure starts increasing relatively more rapidly
suggesting the onset of a forthcoming catastrophic
failure. Under ME partitioning, the larger values of
the anomaly measure at smaller values of b and
gradual increase in both slope and curvature of the
anomaly measure curve would facilitate anomaly
detection significantly before it is possible to do so
under uniform partitioning. Therefore, with regard
to early detection of anomalies, ME partitioning
appears to be more effective than uniform parti-
tioning.
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Fig. 11 depicts the anomaly measure plots
obtained with wavelet partitioning (‘gaus1’) and
phase-space partitioning (SFNN). These two pro-
files of anomaly measure are generated from the
same time series data, where the number of symbols
jSj ¼ 8 in both cases. It is observed that ME

partitioning with ‘gaus1’ wavelet is comparable to
SFNN partitioning. However, in this problem, the
execution time for SFNN to generate the partition is
found to be � 4 h, while that for ME partitioning is
� 100ms on the same computer. Therefore, it may
be inferred from this experiment that ME partition-
ing is computationally several orders of magnitude
less intensive than SFNN partitioning while they
yield similar performance from the perspectives of
anomaly detection.
5.2. Structural damage detection in mechanical

systems

This example demonstrates efficacy of the STSA

method for early detection of damage in mechanical
structures. Laboratory experiments have been con-
ducted on a multi-degree-of-freedom mechanical
vibration apparatus [3]. The mechanical system in
the apparatus is persistently excited at a frequency
of 10.4Hz, which is a close approximation of one of
resonance frequencies of the mechanical structure.
During the experiments, time series data have been
collected from the measurements of displacement
sensors, and each set contains 30 s of data under
persistent vibratory motion of the mass-beam
system. The resulting cyclic stresses induce (irrever-
sible) fatigue crack damage in the critical structures,
which cause gradual reduction in stiffness. Conse-
quently, the statistics of time series data undergo
changes. The objective here is to detect these
changes as early as possible in real time.

The first data set, which is dominated by a
sinusoid of frequency �10:4Hz and represents the
nominal behavior of the mechanical vibration
system, is considered to be the reference point.
The wavelet ‘gaus9’ is chosen for analysis because
this wavelet closely matches the shape of the signal.
A small set of scales around the frequency of
10.4Hz are chosen as per procedure outlined in
Section 2. The alphabet size is chosen, based on the
entropy rate, as eight, i.e., jSj ¼ 8.

Fig. 12 depicts two plots of anomaly measure,
which are obtained from the same data set with
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It is observed in Fig. 12 that ME partitioning with
‘gaus9’ wavelet is comparable to SFNN partition-
ing. However, in this problem, the execution time
for ME partitioning is about five orders of
magnitude less than that for SFNN partitioning.
Hence, it may be inferred from this experiment that
ME partitioning, is better suited for real-time
structural damage detection in mechanical systems.

5.3. Fatigue damage detection in polycrystalline

alloys

This example presents a comparison between
wavelet space and phase-space partitioning in the
context of fatigue crack damage detection in
polycrystalline alloys. The details of the experimen-
tal apparatus, equipped with an ultrasonic flaw
detector and an optical microscope, on which
experiments were conducted are reported in [5]
and references therein. Low-cycle fatigue tests have
been conducted with specimens, made of aluminum
alloy 7075-T6. A sinusoidal load with maximum
and minimum loads of 87 and 4.85MPa, respec-
tively, is applied. A significant amount of internal
damage occurs before the crack appears on the
surface of the specimen, where it is observed by the
optical microscope. This internal damage caused by
multiple small cracks and dislocations affect the
ultrasonic waves as they pass through the regions
where these faults have developed. This phenomen-
on causes signal distortion and attenuation at the
receiver end of the ultrasonic flaw detector.

The crack propagation stage starts when the
internal damage eventually develops into a single
large crack. Subsequently, the crack growth rate
increases rapidly and when the crack is sufficiently
large, the transmitted ultrasonic signal is almost
completely attenuated. The process of obtaining the
ultrasonic time series data is described in [5]. The
results of STSA-based anomaly/damage detection,
obtained with ME and SFNN partitioning methods,
are presented below.

Wavelet ‘gaus2’ is used for obtaining the coeffi-
cients that are stacked to form the scale series data
set. The alphabet size jSj is chosen to be eight. The
scale series data set is partitioned by imposing the
ME criterion to generate the symbols. Fig. 13
depicts two anomaly measure plots that are
obtained from the same data set by using ME and
SFNN partitioning.

While the SFNN partitioning yields slightly higher
values of the anomaly measure and comparable
slope, the profile of wavelet partitioning is more
smooth and yields a larger change in the curvature
around 32kilocycles, which is an early warning for
the forthcoming failure. Simultaneous consideration
of the anomaly measure, slope, and curvature
provides a robust method of failure prediction and
reduces the probability of false alarms.

Similar to the previous experiments, it is observed
that the execution time for ME partitioning is
approximately five orders of magnitude less than
that for SFNN partitioning. Hence, it may be
inferred that ME partitioning, is better suited for
real-time fatigue damage detection in polycrystalline
alloys.

6. Summary and conclusions

This paper presents a novel method of partition-
ing the data space for symbolic time series analysis
(STSA). In this approach, symbols are generated
from the wavelet coefficients of the time series data,
instead of obtaining them directly from the time
series data. Various aspects of this method, such as
selection of wavelet basis and scale range, are
systematically investigated for: (i) suppression of
noise and spurious disturbances and (ii) enhance-
ment of sensitivity to changes in signal dynamics.
The advantages of using wavelet-based partitioning
over phase-space partitioning are demonstrated by
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numerical simulation and laboratory experimenta-
tion. It has been shown that measurement noise
suppression results in robust symbol generation.
The symbol sequences, generated from the wavelet
coefficients of a noisy signal, are able to capture the
changes in signal information better than those
obtained directly from the time series data of the
signal. It is also shown that the choice of an
appropriate wavelet and scales significantly im-
proves computational efficiency and thereby en-
hances implementation of the anomaly detection
technique for real-time applications. An entropy-
based algorithm is introduced for selection of the
symbol alphabet size.

A partitioning method, based on maximum
entropy, is introduced and is compared with the
uniform partitioning method. The performance of
wavelet-based partitioning has been tested via experi-
mentation for: (i) anomaly detection on a nonlinear
electronic system apparatus [1]; (ii) structural damage
detection on a mechanical vibration system apparatus
[3]; and (iii) damage detection in polycrystalline alloys
on a Fatigue Testing apparatus [5].

Wavelet-based maximum entropy (ME) parti-
tioning has been compared with symbolic false
nearest neighbor (SFNN) partitioning [14] with
regard to anomaly detection. Based on the time
series data from three experimental apparatuses, it
is observed that the aforementioned partitioning
methods yield comparable results while the compu-
tation time for wavelet-based ME partitioning is
observed to be several orders of magnitude smaller
than that for SFNN partitioning.

A major conclusion based on this investigation is
that wavelet-based ME partitioning, combined with
an appropriate choice of wavelet and scales,
significantly enhances computational efficiency and
anomaly detection capabilities beyond what has
been reported in literature. The field of STSA is
relatively new and its application to anomaly
detection is very recent. Therefore, the proposed
method of symbol generation for anomaly detection
requires continued theoretical and experimental
research. In this context, future research is recom-
mended in the following areas:
�
 Exploration of lifting techniques [23] for wavelet
customization;

�
 Extension of ME partitioning to multi-dimen-
sional time series;

�
 Noise reduction in time series for robust anom-
aly/damage detection.
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Birkhäuser, Boston, MA, 1998.

[18] Wavelet Toolbox, MATLAB. Mathworks Inc, Natick, MA.

[19] P. Abry, Ondelettes et turbulence, multirésolutions, algor-
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Abstract

The paper presents an analytical tool for early detection and online monitoring of fatigue damage in polycrystalline alloys that are
commonly used in mechanical structures of human-engineered complex systems. Real-time fatigue damage monitoring algorithms rely
on time series analysis of ultrasonic signals that are sensitive to micro-structural changes occurring inside the material during the early
stages of fatigue damage; the core concept of signal analysis is built upon the principles of Symbolic Dynamics, Statistical Pattern Rec-

ognition and Information Theory. The analytical tool of statistical pattern analysis has been experimentally validated on a special-purpose
test apparatus that is equipped with ultrasonic flaw detection sensors and a travelling optical microscope. The paper reports fatigue dam-
age monitoring of 7075-T6 alloy specimens, where the experiments have been conducted under load-controlled constant amplitude sinu-
soidal loadings for low-cycle and high-cycle fatigue.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Symbolic time series analysis; Anomaly detection; Fatigue damage
1. Introduction

Prediction of structural damage and quantification of
structural integrity are critical for safe and reliable opera-
tion of human-engineered complex systems. Fatigue dam-
age is one of the most commonly encountered sources of
structural degradation during both nominal and off-nomi-
nal operations of such systems [1]. Therefore, it is necessary
to develop diagnosis and prognosis capabilities for reliable
and safe operation of the system and for enhanced avail-
ability of its service life. Many model-based techniques
have been reported in literature for structural health mon-
itoring and life prediction [2–5]. Apparently, no existing
model, solely based on the fundamental principles of
0142-1123/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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molecular physics [6], can adequately capture the dynami-
cal behavior of fatigue damage at the grain level. In gen-
eral, model-based approaches are critically dependent on
initial defects in the material micro-structure, which may
randomly form crack nucleation sites and are difficult to
model [1,7]. Small deviations in initial conditions and crit-
ical parameters may produce large bifurcations in the
expected dynamical behavior of fatigue damage [8]. In
addition, fluctuations in usage patterns (e.g., random over-
loads) and environmental conditions (e.g., temperature and
humidity) may adversely affect the service life of mechani-
cal systems. As such, fatigue damage is described as a sto-
chastic phenomenon that emphasizes the need for online
monitoring using sensing devices which can provide useful
and reliable estimates of the anomalies at an early stage [9].

Information-based fatigue damage monitoring using dif-
ferent sensors (e.g., acoustic emission, eddy currents and
ultrasonic) has been proposed in recent literature [10–12].
The capabilities of electrochemical sensors [13] and thermal
imaging techniques [14] have also been investigated for
structural failure analysis. The traditional analysis methods

mailto:szg107@psu.edu
mailto:axr2@psu.edu
mailto:eek105@psu.edu


Nomenclature

D window length on a symbolic sequence
n number of states of the finite state machine
pk state probability vector at time epoch tk

P(�) Probability of the event �
qj jth state of the finite state machine
Q set of all states of the finite state machine
S dynamical systems entropy of the symbol

sequence
tk slow time epoch

r a symbol on a symbolic sequence
pjk transition probability from state qj to qk

Pk state transition matrix at time epoch tk

wk anomaly measure computed at time epoch tk

Uj jth block of the partition of the phase space
X phase space of a dynamical system
R alphabet set
jRj size of the alphabet set

S. Gupta et al. / International Journal of Fatigue 29 (2007) 1100–1114 1101
using acoustic emission technique are used to correlate the
signal parameters (such as the acoustic emission counts, the
peak amplitudes and the energy) with the defect formation
mechanisms and to provide a quantified estimate of faults.
Acoustic emission technique has been investigated by sev-
eral researchers for its sensitivity to the activities occurring
inside the material micro-structure for early detection of
fatigue and fracture failures [15–19]. However, the major
drawback of acoustic emission technique is poor perfor-
mance in noisy environments where signal–noise separa-
tion becomes a difficult task.

The eddy current technique is based on the principles of
electromagnetic induction. When a source of alternating
current is supplied to a conductor, a magnetic field devel-
ops, which induces eddy currents in the material. The pres-
ence of faults in the material affect the eddy current flow
patterns, which can be detected for prediction and estima-
tion of the structural damage [20–22]. The advantages of
eddy current inspection technique include sensitivity to
small cracks and other defects, portability of sensor equip-
ment, minimum part preparation, and non-contact evalua-
tion. However, the limitations of the eddy current
inspection technique are the depth of penetration and it
can be used to detect only surface and near surface defects.
Furthermore, only conductive materials can be inspected.

Ultrasonic sensors function by emitting high-frequency
ultrasonic pulses that travel through the specimen and
are received by the transducers at the other end. As with
the propagation of any wave, it is possible that disconti-
nuities in the propagation media will cause additive and
destructive interference. Since material characteristics
(e.g., voids, dislocations and short cracks) influence the
ultrasonic impedance, a small fault in the specimen is
likely to change the signature of the signal at the receiver
end [23,24,9,25,26]. Therefore, the ultrasonic signals can
be used to capture some of the minute details and small
changes during the early stages of fatigue damage, which
may not be possible to detect by an optical microscope
[9]. Moreover, ultrasonic sensing is applicable to real-
time applications and the sensing probes can be easily
installed at the critical sites. Ultrasonic sensing is also
robust to noisy environments since the externally excited
waves are of very high frequency and they do not inter-
fere with small disturbances. As such, this paper explores
the ultrasonic sensing technique to examine small micro-
structural changes during early stages of fatigue damage
evolution.

The above discussions evince the fact that time series
analysis of sensor data is essential for real-time detection
and monitoring of fatigue damage. From this perspective,
the paper presents symbolic time series analysis (STSA)
[27] of ultrasonic sensor signals for early detection of evolv-
ing anomalies. The STSA method is an information-theo-
retic pattern identification tool that is built upon a
fixed-structure, fixed-order Markov chain [28]; it has been
validated by comparison with existing pattern recognition
techniques such as Principal Component Analysis (PCA)
and Artificial Neural Networks (ANN) [29,30]. A com-
puter-controlled special purpose test apparatus, equipped
with multiple sensing devices (e.g., ultrasonics and optical
microscope) for damage analysis, has been used to experi-
mentally validate the STSA method of fatigue damage
detection. Experiments have been conducted under differ-
ent loading conditions on 7075-T6 aluminum alloy
specimens.

The paper is organized in seven sections including the
present section. Section 2 presents an overview of anomaly
detection methodology using a two-time-scale approach.
Section 3 describes the underlying concepts and essential
features of symbolic time series analysis for anomaly detec-
tion. Section 4 provides a brief description of the fatigue
damage test apparatus. Section 5 presents the experimental
procedure and the application of STSA for fatigue damage
monitoring. Section 6 presents the results and discussion
on early detection of fatigue damage under different load-
ing conditions. The paper is concluded in Section 7 along
with recommendations for future research.

2. Methodology for fatigue damage monitoring

Traditional tools like S–N curves and Goodman dia-
grams are not effective for real-time damage prediction.
This problem is circumvented by information-based diag-
nosis and prognosis tools that are capable of identifying
damage patterns in real time from the statistical behavior
of sensor (e.g., ultrasonic) data sequences. In this context,



Fig. 1. Pictorial view of the two time scales: (1) slow time scale where anomalies evolve and (2) fast time scale where data acquisition is done.
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fatigue damage monitoring is formulated as a two-time-
scale problem. The sampling frequency for data acquisition
is required to be several orders of magnitude faster than the
time period of damage evolution. Fatigue damage monitor-
ing is a two-time-scale problem as delineated below:

� The fast time scale is related to the response time of
machinery operation. Over the span of a given time ser-
ies data sequence, the structural dynamic behavioral sta-
tistics of the system are assumed to remain invariant,
i.e., the process is assumed to have statistically station-
ary dynamics at the fast time scale.
� The slow time scale is related to the time span over which

the process may exhibit non-stationary dynamics due to
(possible) evolution of anomalies. Thus, an observable
non-stationary behavior can be associated with anoma-
lies evolving at a slow time scale.

A pictorial view of the two time scales is presented in
Fig. 1. In general, a long time span in the fast time scale
is a tiny (i.e., several orders of magnitude smaller) interval
in the slow time scale. For example, evolution of fatigue
damage in structural materials (causing a detectable change
in the dynamics of the system) occurs on the slow time scale
(possibly in the order of months or years); fatigue damage
behavior is essentially invariant on the fast time scale
(approximately in the order of seconds or minutes). Never-
theless, the notion of fast and slow time scales is dependent
on the specific application, loading conditions and operat-
ing environment. As such, from the perspective of fatigue
monitoring, sensor data acquisition is done on the fast time
scale at different slow time epochs separated by fixed inter-
vals on the slow time scale. Specifically, the objective of this
paper is to demonstrate real-time monitoring of fatigue
damage by detecting small changes in the statistical pat-
terns of the ultrasonic sequences using the STSA approach.
3. Symbolic time series analysis for anomaly detection

This section presents the underlying concepts and essen-
tial features of symbolic time series analysis [27] for anom-
aly detection in complex dynamical systems [28]. While the
details are reported in previous publications [28,29,31]; a
brief review of this method is presented here for complete-
ness and clarity of the paper. The principle of symbolic
dynamics is based on the transformation of a data sequence
(e.g., time series data) to a symbol sequence by partitioning
a compact region X of the phase space, over which the tra-
jectory evolves, into finitely many discrete blocks as shown
in Fig. 2. Let {U1,U2, . . .,Um} be a partitioning of X, such
that it is exhaustive and mutually exclusive set, i.e.,[m
j¼1

Uj ¼ X and Uj

\
Uk ¼ ; 8j 6¼ k: ð1Þ

Each block Uj is labelled as the symbol rj �R, where the
symbol set R is called the alphabet set consisting of m dif-
ferent symbols (i.e., m = jRj). As the system evolves in time,
it travels through various blocks in its phase space and the
corresponding symbol rj �R is assigned to it, thus convert-
ing a data sequence to a symbol sequence . . . ri1ri2 . . . rik . . .
[32,33]. Fig. 2 exemplifies the partitioning of the phase
space where each block is assigned a particular symbol
such that a symbol sequence is generated from the phase
space at a given slow time epoch. Once the symbol
sequence is obtained, the next step is construction of a
finite state machine [34]. These steps are explained in
details in the following subsections.

3.1. Wavelet space partitioning

A crucial step in symbolic time series analysis is parti-
tioning of the phase space for symbol sequence generation
[27]. Several partitioning techniques have been reported in
literature for symbol generation [35–37], primarily based
on symbolic false neighbors. These techniques rely on par-
titioning the phase space and may become cumbersome
and extremely computation-intensive if the dimension of
the phase space is large. Moreover, if the time series data
is noise-corrupted, then the symbolic false neighbors would
rapidly grow in number and require a large symbol alpha-
bet to capture the pertinent information on the system
dynamics. Therefore, symbolic sequences as representa-
tions of the system dynamics should be generated by alter-
native methods because phase-space partitioning might
prove to be a difficult task in the case of high-dimensions
and presence of noise. The wavelet transform [38] largely
alleviates these shortcomings and is particularly effective
with noisy data from high-dimensional dynamical systems.

This paper has adopted a wavelet-based partitioning
approach [28,31] for construction of symbol sequences
from the time series data. In this method, the time series
data are first converted by wavelet transform, where wave-
let coefficients are generated at different scales and time
shifts. The graphs of wavelet coefficients versus scale, at
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Fig. 2. STSA-based pattern identification.
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selected time shifts, are stacked starting with the smallest
value of scale and ending with its largest value and then
back from the largest value to the smallest value of the
scale at the next instant of time shift. The arrangement of
the resulting scale series data in the wavelet space is similar
to that of the time series data in the phase space. The wave-
let space is partitioned with alphabet size jRj into segments
of coefficients on the ordinate separated by horizontal lines
such that the regions with more information are parti-
tioned finer and those with sparse information are parti-
tioned coarser. This is achieved by maximizing the
Shannon entropy [39], which is defined as

S ¼ �
XjRj
i¼1

pi logðpiÞ; ð2Þ

where pi is the probability of the ith state and summation is
taken over all possible states. Uniform probability distribu-
tion of states is a consequence of maximum entropy that
makes the partition coarser in regions of low-data density
and finer in regions of high-data density.

3.2. State machine construction

The partitioning as described in the previous section is
performed at time epoch t0 of the nominal condition that
is chosen to be a healthy condition having zero anomaly
measure. A finite state machine [34] is then constructed,
where the states of the machine are defined corresponding
to a given alphabet R and window length D. The alphabet
size jRj is the total number of partitions while the window
length D is the length of consecutive symbol words forming
the states of the machine [28]. The states of the machine are
chosen as all possible words of length D from the symbol
sequence, thereby making the number n of states to be
equal to the total permutations of the alphabet symbols
within words of length D, (i.e., n 6 jRjD; some of which
may be forbidden with zero probability of occurrence).
For example, if R = {0,1}, i.e., jRj = 2 and D = 2, then
the number of states is n 6 jRjD = 4; and the possible states
are Q = {00,01,10,11}.

The choice of jRj and D depends on specific experiments,
noise level and also the available computation power. A
large alphabet may be noise-sensitive while a small alphabet
could miss the details of signal dynamics. Similarly, a high-
value of D is extremely sensitive to small signal distortions
but would lead to a large number of states requiring more
computation power. Using the symbol sequence generated
from the time series data, the state machine is constructed
on the principle of sliding block codes [32] as explained
below. The window of length D on the symbol sequence
. . . ri1ri2 . . . rik . . . is shifted to the right by one symbol, such
that it retains the last (D � 1) symbols of the previous state
and appends it with the new symbol ri‘ at the end. The
symbolic permutation in the current window gives rise to
a new state. The machine constructed in this fashion is
called D-Markov machine [28] because of its Markov
properties.

Definition 3.1. A symbolic stationary process is called
D-Markov if the probability of the next symbol depends
only on the previous D symbols, i.e.,
P ðri0=ri�1

. . . ri�Dri�D�1
. . .Þ ¼ P ðri0=ri�1

. . . ri�DÞ.

The finite state machine constructed above has D-Mar-
kov properties because the probability of occurrence of
symbol ri‘ on a particular state depends only on the
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configuration of that state, i.e., the previous D symbols.
Once the partitioning alphabet R and word length D are
determined at the nominal condition (time epoch t0), they
are kept constant for all (slow time) epochs {t1, t2, . . ., tk. . .},
i.e., the structure of the machine is fixed at the nominal
condition. That is, the partitioning and the state machine
structure generated at the nominal condition serve as the
reference frame for data analysis at subsequent time
epochs. For D = 1, the set of states bears an equivalence
relation to the alphabet R of symbols [40]. The states of
the machine are marked with the corresponding symbolic
word permutation and the edges joining the states indicate
the occurrence of an event ri‘ . The occurrence of an event
at a state may keep the machine in the same state or move
it to a new state. The language of the machine is usually
incomplete in the sense that all states might not be reach-
able from a given state.

Definition 3.2. The probability of transitions from state qj

to state qk belonging to the set Q of states under a
transition d: Q · R! Q is defined as

pjk ¼ P ðr 2 Rjdðqj; rÞ ! qkÞ;
X

k

pjk ¼ 1: ð3Þ

Thus, for a D-Markov machine, the irreducible stochastic
matrix P ” [pij] describes all transition probabilities between
states such that it has at most jRjD+1 nonzero entries. The left
eigenvector p corresponding to the unit eigenvalue of P is the
state probability vector under the (fast time scale) stationary
condition of the dynamical system [28]. On a given symbol
sequence . . . ri1ri2 . . . ril . . . generated from the time series
data collected at slow time epoch tk, a window of length
(D) is moved by keeping a count of occurrences of word
sequences ri1 . . . riDriDþ1

and ri1 . . . riD which are respectively
denoted by Nðri1 . . . riDriDþ1

Þ and Nðri1 . . . riDÞ. Note that if
Nðri1 . . . riDÞ ¼ 0, then the state q � ri1 . . . riD 2 Q has zero
probability of occurrence. For Nðri1 . . . riDÞ 6¼ 0, the transi-
tions probabilities are then obtained by these frequency
counts as follows:

pjk � P ½qkjqj� ¼
P ½qk; qj�

P ½qj�
¼ Pðri1 . . . riDrÞ

P ðri1 . . . riDÞ
) pjk

� Nðri1 . . . riDrÞ
Nðri1 . . . riDÞ

; ð4Þ

where the corresponding states are denoted by
qj � ri1ri2 . . . riD and qk � ri2 . . . riDr. The time series data
under the nominal condition (set as a benchmark) gener-
ates the state transition matrix P0 that, in turn, is used to
obtain the state probability vector p0 whose elements are
the stationary probabilities of the state vector, where p0 is
the left eigenvector of P0 corresponding to the (unique)
unit eigenvalue. Subsequently, state probability vectors
p1,p2, . . .,pk, . . . are obtained at slow time epochs
t1, t2, . . ., tk, . . . based on the respective time series data. Ma-
chine structure and partitioning should be the same at all
slow time epochs.
3.3. Pattern identification procedure

Behavioral pattern changes are quantified as deviations
from the nominal behavior (i.e., the probability distribu-
tion at the nominal condition). The resulting anomalies
(i.e., deviations of the evolving patterns from the nominal
pattern) are characterized by a scalar-valued function,
called Anomaly Measure w that is quasi-static in the fast
time scale and is monotonically non-decreasing in the slow
time scale. The state probability vector at any time instant
corresponds to a singleton point on the unity-radius hyper-
sphere. During fatigue damage evolution, the tip of the
probability vector moves along a path on the surface of this
hypersphere. The initial starting point of the path is the
probability vector with uniform distribution obtained with
maximum entropy partitioning (see Section 3.1). As the
damage progresses, the probability distribution changes;
eventually when a very large crack is formed, complete
attenuation of the ultrasonic signal occurs and conse-
quently the tip of the probability vector reaches a point
where all states have zero probabilities of occurrence except
one which has a probability one (i.e., a delta-distribution);
this state corresponds to the partition region where all data
points are clustered due to complete attenuation of the
signal.

In the context of fatigue damage, the anomaly measure
is formulated on the following assumptions.

� Assumption #1: The damage evolution is an irreversible
process (i.e., with zero probability of self healing) and
implies the following conditions.

wk P 0; wkþ‘ � wk P 0 8‘ P 0 8k: ð5Þ
� Assumption #2: The damage accumulation between two

time epochs is a path function, i.e., dependent on the
path traversed to reach the target state from the initial
state.

In the context of fatigue damage in polycrystalline alloys
at room temperature, the crack length is traditionally
defined by a straight line joining the starting point to the
tip of the crack but, in reality, the actual crack follows a
complicated path (possibly fractal in ductile materials). In
fact, at the initial stages of fatigue damage, there can be
multiple short cracks oriented in different directions.
Therefore, crack length alone does not provide complete
information on fatigue damage evolution. Since ultrasonic
signals are highly sensitive to small micro-structural
changes, signal distortion is a good index of anomaly
growth. The tip of the probability vector, obtained through
symbolic time series analysis, moves along a curved path
on the surface of the unity-radius hypersphere between
the initial point p0 (i.e., uniform distribution obtained
under maximum entropy partitioning) and the final point
at very large crack formation pf (i.e., d-distribution due
to complete attenuation of the signal). The phenomenon
such as piling up of dislocations, strain hardening or reflec-
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tions from multiple crack surfaces affect the ultrasonic sig-
nals in a variety of ways. An increase of the ultrasonic
amplitude is also observed during very early stages of fati-
gue damage due to hardening of the material. On the other
hand, ultrasonic signals attenuate sharply at the crack
propagation stage upon development of a large crack.

As such, distortion of ultrasonic signals at a single time
epoch may not uniquely determine the state of fatigue dam-
age. The rationale is that two signals may exhibit similar
characteristics but, in terms of actual incurred damage,
the states are entirely different. Consequently, fatigue dam-
age is a path function instead of being a state function. This
assessment is consistent with assumption #1 implying that
the damage evolution is irreversible. That is, at two differ-
ent time epochs, the damage cannot be identical unless the
net damage increment is zero. Consequently, by assump-
tion #2, the anomaly measure should follow the traversed
path of the probability vector, not the straight line joining
the end points (i.e., the tips of the probability vectors).

The anomaly measure, based on the path between the
nominal state to the completely damaged state, can be dif-
ferent even for identical test samples and under the same
loading conditions because of the stochastic nature of fati-
gue phenomena. As such, analysis of a stochastic data set
collected under identical experimental conditions is essen-
tial for identification of variations in different data sets.
The following distance function is derived between proba-
bility vectors at two time epochs:

d pk; pl
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk � plð ÞT pk � plð Þ

q
: ð6Þ

The algorithm for computation of the anomaly measure
w compensates for spurious measurement and computation
noise in terms of the sup norm which is defined as
iei1 ” max(je1j, . . ., jemj) of the error in the probability vec-
tor (i.e., the maximum error in the elements of the proba-
bility vector). The algorithm is presented below.

(i) w0 = 0; dw1 = 0; ep ¼ p0; k = 1;
(ii) if kpk � epk1 > � then dwk ¼ d pk; epð Þ and ep  pk;

(iii) wk = wk�1 + dwk;
(iv) k k + 1; dwk = 0; go to step (ii).

The real positive parameter �, is associated with the
robustness of the measure against measurement and com-
putation noise and is identified by performing an experi-
ment with a sample with no notch. Since there is no
notch there is practically no stress augmentation and rela-
tively no fatigue damage. As such, the parameter � is esti-
mated as

� � max
l2f1;...;Ng

ðkplþ1 � plk1Þ ð7Þ

from N consecutive observations with N� 1.
The algorithm works in the following fashion: the refer-

ence point ep is initialized to the starting point p0 and anom-
aly measure w0 is set to 0. At any slow time epoch tk if the
state probability vector moves such that the distance trav-
elled in any particular direction (i.e., the sup norm i�i1) is
greater than � as specified in step (ii), then the anomaly
measure is incremented by dwk ¼ d pk; epð Þ and the reference
point is shifted to the current point pk. The procedure is
repeated at all slow time epochs. As such, the total path
travelled by the tip of probability vector represents the
deviation from the nominal condition and the associated
damage.

3.4. Real-time implementation

Fatigue damage monitoring using STSA has been suc-
cessfully implemented in real time. The nominal condition
is chosen after the start of the experiment at time epoch t0,
when the system attains a steady state and is considered to
be in a healthy condition. The function module for STSA is
triggered at this point. The D-Markov machine states are
fixed in advance using a priori determined values of
the parameters: alphabet size jRj and window length D.
The tasks of wavelet space partitioning and D-Markov
machine construction are performed based on the time series
data at the slow time epoch t0 (nominal condition). The
state probability vector p0 at time epoch t0 is stored for
computation of anomaly measures at subsequent slow time
epochs, t1, t2, . . ., tk, . . ., which are chosen to be separated by
uniform intervals of time in these experiments. The ultra-
sonic data files at time epochs t0, t1, . . ., tk, . . . are read by
the STSA function module that calculates the anomaly
measure values at these time epochs. The algorithm is com-
putationally very fast (i.e., several orders of magnitude fas-
ter relative to slow time scale damage monitoring) and the
evolution of anomaly measure is exhibited in real time. The
plot is updated with the most recent value of anomaly mea-
sure at each (slow time) epoch. Thus, the STSA algorithm
allows on-line health monitoring and is capable of issuing
warnings of incipient failures well in advance.

3.5. Advantages of STSA

After having discussed the underlying principles and
essential features of STSA, the major advantages of STSA
for anomaly detection are listed below:

(a) Robustness to measurement noise and spurious signals

[31] – The procedure of STSA is robust to measure-
ment noise and spurious disturbances and it filters
out the noise at different steps. First of all, coarse
graining of the continuous data (i.e., partitioning into
finite blocks) and generation of a symbol sequence
eliminate small measurement noise [28]. Secondly,
the wavelet transform also contributes in signal–noise
separation of the raw time series data by proper
choice of scales [31]. Finally, the state probabilities
are generated by passing a long symbol sequence over
the finite state machine, which further eliminates
small (zero-mean) measurement noise.
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(b) Adaptability to low-resolution sensing due to coarse
graining in space partitions [28].

(c) Capability for early detection of anomalies because of
sensitivity to signal distortion and real-time execution
on commercially available inexpensive platforms
[30,29].

(d) Applicability to networked communication systems
due to the capability of data compression into low-
dimensional pattern vectors.

3.6. Summary of STSA based anomaly detection

The symbolic time series analysis (STSA) procedure of
anomaly detection is summarized below.

� Acquisition of time series data from appropriate sen-
sor(s) at time epoch t0 of the nominal condition, when
the system is assumed to be in the healthy state (i.e., zero
anomaly measure).
� Generation of the wavelet transform coefficients,

obtained with an appropriate choice of the wavelet basis
and scale range.
� Maximum entropy partitioning of the wavelet scale ser-

ies data at the nominal condition (see Section 3.1); and
generation of the corresponding symbol sequence. The
partitioning is fixed for subsequent time epochs.
� Construction of the D-Markov machine states from the

symbol alphabet size jRj and the window length D, and
generation of the state probability vector p0 at time
epoch t0.
� Generation of time series data sequences at subsequent

slow time epochs, t1, t2, . . ., tk, . . ., and their conversion
to the wavelet domain to generate respective symbolic
sequences based on the partitioning at time epoch t0.
� Generation of the state probability vectors

p1,p2, . . .,pk, . . . at slow time epochs, t1, t2, . . ., tk, . . . from
the respective symbolic sequences using the finite state
machine constructed at time epoch t0.
� Computation of scalar Anomaly Measures

w1,w2, . . .,wk, . . . at time epochs, t1, t2, . . ., tk, . . .

4. Experimental apparatus and sensors for damage detection

The experimental apparatus, shown in Fig. 3, is a spe-
cial-purpose uniaxial fatigue testing machine, which is
operated under load control or strain control at speeds
up to 12.5 Hz; a detailed description of the apparatus
and its design specifications are reported in [41]. The test
specimens are subjected to tensile–tensile cyclic loading
by a hydraulic cylinder under the regulation of computer-
controlled electro-hydraulic servo-valves. The damage
estimation and life prediction subsystem consists of data
analysis software and the associated computer hardware.
The process instrumentation and the control module of
the fatigue test apparatus are briefly described below.
� Closed loop servo-hydraulic unit and controller: The
instrumentation and control of the computer-controlled
uniaxial fatigue test apparatus includes a load cell, an
actuator, the hydraulic system, and the controller. The
servo-hydraulic unit can provide either random loads
or random strains to a specimen for both low-cycle
and high-cycle fatigue tests at variable amplitudes and
multiple frequencies. The control module is installed
on a computer which is dedicated to machine operation.
The controller runs the machine according to a schedule
file which contains the loading profile and the number of
load cycles. The real time data from the extensometer
and load cell are supplied to the controller for operation
under specified position and load limits.
� Subsystem for data acquisition, signal processing, and

engineering analysis: In addition to the computer for
controlling the load frame, a second computer is used
for real-time image data collection from the microscope
to monitor the growth of surface cracks. This computer
controls the movement of the microscope to focus on
the region of the crack tip. The instrumentation for
ultrasonic flaw detection scheme is connected to a third
computer. The ultrasonic data collected on this com-
puter in real-time is then transferred at regular intervals
to a fourth computer on which the STSA software is
installed. This computer performs the real-time data
analysis task. These laboratory computers are intercon-
nected by a local dedicated network for data acquisition,
data communications, and control.

Fig. 4 shows a typical 7075-T6 aluminum specimen used
for testing in the fatigue damage test apparatus. The spec-
imens used are 3 mm thick and 50 mm wide, and have a
slot of 1.58 mm · 4.5 mm at the center. The central notch
is made to increase the stress concentration factor that
ensures crack initiation and propagation at the notch ends.
The test specimens have been subjected to sinusoidal load-
ing under tension–tension mode (i.e., with a constant posi-



Fig. 4. Cracked specimen with a central notch.

Fig. 5. Schematic of ultrasonic sensors on a test specimen.
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tive offset) at a frequency of 12.5 Hz. The DC offset was
provided in the load cycling to ensure that the specimen
was always under tension. Since inclusions and flaws are
randomly distributed across the material, small cracks
appear at these defects and propagate and join at the
machined surface of the notch even before microscopically
visual cracks appear on the surface.

The test apparatus is equipped with two types of sensors
that have been primarily used for damage detection:

(1) Travelling optical microscope: The travelling optical
microscope, shown as part of the test apparatus in
Fig. 3, provides direct measurements of the visible
portion of a crack. The resolution of the optical
microscope is about 2 lm at a working distance of
10–35 cm and the images are taken at a magnification
of 75·. The growth of the crack is monitored contin-
uously by the microscope which takes the images of
the surface of the specimen at regular intervals. The
microscope shifts from left to right side of the central
notch and vice versa after every 200 cycles to track
crack growth on both sides of the notch. In order
to take pictures the controller slows down the
machine to less than 5 Hz to get a better resolution
of the images. The crack length can be calculated
automatically by movement of the microscope from
the respective notch end to the tip of the crack. The
data acquisition software also allows for manual
operation and image capture at the desired moment.
Formation of very small cracks is difficult to detect
and model due to large variability of material irregu-
larities. This paper primarily focuses on analyzing
ultrasonic data for more accurate characterization
of the nature of small defects.

(2) Ultrasonic flaw detector: A piezoelectric transducer is
used to inject ultrasonic waves in the specimen and an
array of receiver transducers is placed on the other
side of notch to measure the transmitted signal. In
these experiments, an array of 2 receiver transducers
was placed below the notch to detect faults on both
left and right side of the notch. The ultrasonic waves
produced were 5 MHz sine wave signals and they
were emitted during a very short portion at the peak
of every load cycle. Ultrasonic measurements were
taken at stress levels that exceeded the crack opening
stress and this causes maximum attenuation of the
ultrasonic waves. Note that if crack closure occurs
at low-loads, then an alternative method would be
needed to detect anomalies. The sender and receiver
ultrasonic transducers are placed on two positions,
above and below the notch, so as to send the signal
through the region of crack propagation and receive
it on the other side, as seen in Fig. 5.

As with the propagation of any wave, it is possible that
discontinuities in the propagation media will cause additive
and destructive interference. Since material characteristics
(e.g., voids, dislocations and short cracks) influence ultra-
sonic impedance, a small fault in the specimen is likely to
change the signature of the signal at the receiver end. The
effect of these discontinuities in the material is to distort
the transmitting ultrasonic waves. Since ultrasonic waves
have a very small wavelength, very small faults can be
detected. Therefore, the received signal can be used to cap-
ture minute details and small changes during the early
stages of fatigue damage, which are not possible to detect
by an optical microscope [9]. Prior to the appearance of a
single large crack on the surface of the specimen as detected
by the optical microscope, deformations (e.g., dislocations
and short cracks) can cause detectable attenuation and/or
distortion of the ultrasonic waves [25]. Recent literature
has also shown nonlinear modelling approaches of the
ultrasonic interference with the material micro-structures
[42,43]. An elaborate description of the properties of ultra-
sonic waves in solid media is provided by Rose [44].

The advantages of using ultrasonic flaw detection over a
microscope are the ease of installation at the desired dam-
age site and detection of early anomalies before the onset of
widespread fatigue crack propagation. It is observed that a
crack always starts at the stress-concentrated region near
the notch but the exact site of crack nucleation can be trea-
ted as a random event. An optical microscope is only capa-
ble of detecting cracks when they appear on the front
surface of the specimen. Therefore, the study in this paper
is based on analyzing the ultrasonic data for identification
of fatigue damage in the small crack regime.

5. Experimentation and application of STSA for fatigue

damage monitoring

The fatigue tests were conducted on center notched
specimens with the objective of real-time continuous mon-
itoring of fatigue damage growth on both sides of the
notch. The tests were performed at 12.5 Hz frequency
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under two different types of loading conditions: (a) stress

controlled low-cycle fatigue and (b) stress controlled high-

cycle fatigue. For low-cycle fatigue loading the specimens
were subjected to a sinusoidal load where the maximum
and minimum loads were kept constant at 92.5 MPa and
4.85 MPa. For high-cycle fatigue loading the maximum
and minimum amplitudes were kept constant at 71 MPa
and 4.85 MPa.

The optical images were collected automatically at every
200 cycles until a crack was detected on the specimen sur-
face by the optical microscope. Subsequently, the images
were taken at user command and the microscope was
moved such that it always focused on the crack tip. A sig-
nificant amount of micro-structural damage caused by
multiple small cracks, dislocations and other defects occurs
before a single large crack appears on the surface of the
specimen when it is observed by the optical microscope
[45]. This phenomenon causes distortion and attenuation
of the ultrasonic signal at the receiver end. The crack prop-
agation stage starts when this micro-structural damage
eventually develops into a single large crack. Subsequently,
the crack growth rate increases rapidly and when the crack
is sufficiently large, complete attenuation of the transmitted
ultrasonic signal occurs, as seen at the receiver end. After
Fig. 6. Evolution of surface crack and probability distribu
the crack appears on the surface, fatigue damage growth
can be easily monitored by the microscope but the ultra-
sonics provide early warnings even during the crack initia-
tion phase.

Ultrasonic waves with a frequency of 5 MHz were trig-
gered at each peak of the sinusoidal load to obtain 100 data
points in each cycle. Since the ultrasonic frequency is much
higher than the load frequency, data acquisition was done
for a very short interval in the time scale of load cycling.
Therefore, it can be implied that ultrasonic data were col-
lected at the peak of each sinusoidal load cycle, where
the stress is maximum and the crack is open causing max-
imum attenuation of the ultrasonic waves. The slow time
epochs were chosen to be 1000 load cycles (i.e., �80 s)
apart. At the onset of each slow time epoch, the ultrasonic
data points were collected on the fast time scale of 100
cycles (i.e., �8 s), which produced a string of 10,000 data
points. It is assumed that during this fast time scale of
100 cycles, the system remained in a stationary condition
and no major changes occurred in the fatigue damage
behavior. This set of time series data collected in the man-
ner described above at different slow time epochs was ana-
lyzed using the STSA method to calculate the anomaly
measures at respective slow time epochs.
tion on left side of the notch under low cycle fatigue.
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Following the STSA procedure for anomaly detection as
described in Section 3, the alphabet size and depth have
been chosen to be jRj = 8 and D = 1, respectively; conse-
quently, the number of machine states is jRjD = 8. The
wavelet basis has been chosen to be ‘gaus2’ [46]. Absolute
values of the wavelet scale series data have been used to
generate the partition because of the symmetry of the data
sets about their mean. With this selection, the STSA tool
has been able to capture the anomalies significantly earlier
than the optical microscope. Increasing the value of jRj fur-
ther did not improve the results and increasing the value of
D created a large number of states of the finite state
machine, many of them having very small or zero probabil-
ities, and required a larger number of data points at each
time epoch to stabilize the state probability vectors. The
advantage of having a small number of states is fast com-
putation on inexpensive processors and also robustness
to noise. The wavelet basis, ‘gaus2’, provides better results
than the wavelet bases of the Daubechies family [38]
because the ‘gaus2’ wavelet base closely matches the shape
of the sinusoidal ultrasonic signals.

The nominal condition at the slow time epoch t0 was
chosen to be �0.5 kilocycles to ensure that the electro-
hydraulic system of the test apparatus had come to a steady
Fig. 7. Evolution of surface crack and probability distribu
state and that no significant damage occurred till that
point. This nominal condition was chosen as a benchmark
where the specimen was assumed to be in a healthy state,
and thus the anomaly measure was chosen to be zero.
The anomalies at subsequent slow time epochs,
t1, t2, . . ., tk,. . ., were then calculated with respect to the
nominal condition at t0. It is emphasized that the anomaly
measure is relative to the nominal condition which is fixed
in advance and should not be confused with the actual
damage at an absolute level. However, inferring fatigue
damage from the observed anomaly measure is an inverse
problem that is a topic of future research.

6. Experimental results and discussion

This section presents the results of symbolic time series
analysis of the ultrasonic data generated by fatigue tests
described in Section 5. In each of the six plate pairs from
(a) to (f) in Figs. 6–9, the top plate displays the surface
image of the test specimen, as seen by the optical micro-
scope; and histograms of the state probability distribution
in the bottom plates exhibit evolution of fatigue damage
patterns at different slow time epochs. These patterns
gradually change from uniform distribution (i.e., minimal
tion on right side of the notch under low cycle fatigue.



Fig. 8. Evolution of surface crack and probability distribution on left side of the notch under high-cycle fatigue.
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information) to delta distribution (i.e., maximum informa-
tion) in each figure.

The image in each of Figs. 6(a), 7(a), 8(a) and 9(a) shows
the nominal condition at �0.5 kilocycles when the anomaly
measure is taken to be zero. This is considered to be the ref-
erence point with the available information on potential
damage being minimal. This is reflected in the uniform dis-
tribution (i.e., maximum entropy or highest uncertainty) as
seen from the histograms in the corresponding bottom
plates.

The images in plate pairs (b) and (c) in Figs. 6–9 show
the specimen surface before crack propagation. These
images do not yet have any indication of surface crack
although the corresponding bottom plates do exhibit devi-
ations from the uniform probability distribution (see the
bottom plate in plate pair (a) for comparison). This is an
evidence that the analytically derived results, based on
ultrasonic sensor data, produce relevant damage informa-
tion during crack initiation; this information is not avail-
able from the corresponding optical images. For low-
cycle fatigue in Figs. 6 and 7, the plate pairs (b) and (c)
represent damage status at �20 and �45 kilocycles, respec-
tively; and for high-cycle fatigue in Figs. 8 and 9, they rep-
resent damage status at �50 and �150 kilocycles,
respectively. The deviations of these histograms from those
at the nominal condition in plates (a) indicate that the
probability vector has moved to another location on the
surface of unity-radius hypersphere. The path depends on
the interactions of the ultrasonic signals with the subsur-
face deformities.

The image in each of Figs. 6(d), 7(d), 8(d) and 9(d)
exhibits the first noticeable appearance of a crack on the
specimen surface, which is often deemed as the boundary
of crack initiation and crack propagation phases; however,
crack propagation might have started before the appear-
ance of a surface crack. For low-cycle fatigue in Figs. 6
and 7, surface cracks have been detected by the microscope
at �54 and �52 kilocycles on the left side and right side of
the notch, respectively. Similarly, for high-cycle fatigue in
Figs. 8 and 9, surface cracks have been detected at �201
and �215 kilocycles on left side and right side of the notch,
respectively. The appearance of a large surface crack indi-
cates that a significant portion of the crack or multiple
small cracks might have already developed underneath
the surface before they started spreading on the surface.
However, further micro-structural analysis is need to con-
firm these findings. The histogram of probability distribu-
tion in the corresponding bottom plates show further
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evolution of the probability vector with the fatigue dam-
age. At this stage, the information on damage is enhanced
compared to what was available in the earlier cycles. At the
onset of the crack propagation phase, the histograms of
probability distribution show drastic changes in patterns,
which indicate rapid development of large cracks.

The image in each of Figs. 6(e), 7(e), 8(e) and 9(e) exhib-
its a fully developed crack in its propagation phase. The
corresponding bottom plate shows the histogram of the
probability distribution that is significantly different from
those in earlier cycles in plate pairs (a)–(d), which shows
further gain in the information on crack damage. The
image in each of Figs. 6(f) and 7(f) exhibits a completely
broken specimen at �80 kilocycles for low-cycle fatigue.
Similarly, the image in each of Figs. 8(f) and 9(f) exhibits
a completely broken specimen at �240 kilocycles for
high-cycle fatigue. The corresponding bottom plates show
the delta distribution indicating complete information on
crack damage.

The observation in Figs. 6–9 is further clarified by using
the notion of entropy (see Eq. (2)). The data at the nominal
condition have been partitioned using the maximum
entropy principle, which leads to uniform probability dis-
tribution as seen in the bottom plate of plate pair (a) in
Figs. 6–9. In contrast, for the completely broken stage of
the specimen, the entire probability distribution is concen-
trated in only one state as seen in the bottom plate of plate
pair (f) in Figs 6–9, due to very large attenuation of the
ultrasonic signal. This phenomenon of the test specimen
being completely broken signifies certainty of information
and hence zero entropy. Therefore, as the fatigue crack
damage evolves, the uniform distribution (i.e., maximum
entropy) under nominal condition degenerates toward the
delta distribution (i.e., zero entropy) for the broken speci-
men. In the intermediate stages, gradual degradation can
be quantitatively evaluated using this information.

Fig. 10 shows the evolution of anomaly measure profiles
obtained by STSA of ultrasonic data for low-cycle and
high-cycle fatigue and the corresponding crack growth
plots. The top plate on the left column in Fig. 10 shows
profiles of anomaly measure for both left and right sides
of the notch under low-cycle fatigue. Similarly, the top
plate on the right column shows profiles of anomaly mea-
sure for both left and right sides of the notch under high-
cycle fatigue. The bottom plates show the corresponding
crack growth profiles. In each curve in the top plates of
Fig. 10, the sharp change in the slope of the anomaly mea-
sure indicates the onset of crack propagation phase. This
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Fig. 10. Profiles of anomaly measure and crack growth for center-notched specimens under low cycle and high-cycle fatigue.
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occurs approximately upon appearance of a surface crack.
The vertical dashed lines in the top two plates of Fig. 10
indicate the first detection of a surface crack by the optical
microscope.

It is observed that small changes can be detected by
STSA significantly before the microscope can capture a
surface crack. The slope of the anomaly measure represents
the fatigue damage growth rate while the magnitude indi-
cates the accumulated fatigue damage starting from the
nominal condition. An abrupt increase in the slope (i.e.,
a sharp rise in the curvature) of anomaly measure profile
provides a clear insight into a forthcoming failure. The
region to the right of the vertical dashed lines for left side
and right side anomaly measure curves in the top plate
on left column of Fig. 10 can be considered to be the
boundary of the crack initiation and crack propagation
phases, where the growth of anomaly measure is signifi-
cantly faster than that in the crack initiation phase. How-
ever, the critical information lies in the region towards
the left of the vertical lines which is broadly identified as
crack initiation phase where no crack was visible on the
surface. This is the region where micro-structural damage
such as multiple small cracks possibly caused small changes
in the ultrasonic signal profile. After the multiple small
cracks coalesce together to form a single large crack, the
crack propagation phase starts. Damage evolution under-
goes elastoplastic deformation under low-cycle fatigue
due to a large number of dislocation movements and multi-
ple small cracks develop from a very early stage. Similar
effects are observed for high-cycle fatigue as seen in the
top plate on right column of Fig. 10. In the region towards
the right of the vertical dashed lines, anomaly measure pro-
files show significantly faster growth as compared to the
slow growth during crack initiation towards the left of
the vertical lines. For low-cycle fatigue, a relatively large
slope in the anomaly measure is observed even during
crack initiation region indicating occurrence of significant
damage during this phase. Crack initiation prevailed for
�52–55 kilocycles for low-cycle fatigue, which is �68% of
the total life. For high-cycle fatigue, crack initiation pre-
vailed for a relatively longer period of �205–215 kilocycles
for development of a single large crack, which amounts to
�87% of the total life.

The top two plates in Fig. 10 show a relatively large
slope of anomaly measure from the start of cyclic loading
to �5 kilocycles for both low-cycle and high-cycle fatigue.
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This is the stage where micro-structural damage (e.g., due
to dislocation movements and accumulation, and persistent
slip band formation) induces hardening of the strained
components [45] and changes the ultrasonic impedance
leading to a sharp rise in the local slope of the anomaly
measure profile. After these initial effects subside, a modest
reduction of the slope takes place for the remaining part of
the crack initiation phase. A sharp rise of slope is again
observed at the onset of the crack propagation phase. Sim-
ilar phenomena were observed by Berkovits and Fang [47]
in acoustic emission experiments on smooth specimens of
Incoloy 901 at room temperature. Further experiments
and micro-structural analysis are necessary to confirm
these findings.

7. Summary, conclusions, and future work

This paper presents the concept, theory, and experimen-
tal validation of a statistical pattern identification tool for
early detection and online monitoring of fatigue damage in
polycrystalline alloys. The underlying principle of fatigue
damage detection is built upon symbolic time series analy-
sis of ultrasonic sensor signals. A combination of maxi-
mum-entropy partitioning in the wavelet domain and
symbolic dynamics enables fatigue damage detection signif-
icantly before the onset of crack propagation. The codes of
damage analysis are executable in real time and have been
demonstrated on a special-purpose fatigue testing appara-
tus on 7075-T6 aluminum alloy specimens under: stress
controlled low-cycle fatigue and stress controlled high-
cycle fatigue. The results consistently indicate that the code
is capable of detecting damage before any surface cracks
are captured by the optical microscope.

The reported work is a step toward building a reliable
instrumentation system for early detection of fatigue dam-
age in polycrystalline alloys. Further experimental, analyt-
ical and micro-structural research is necessary before its
usage in industry. While there are many technical issues
that need to be addressed, the following research topics
are being currently pursued.

� Statistical analysis of an ensemble of ultrasonic time ser-
ies data sets, collected under identical loading and envi-
ronmental conditions, to account for manufacturing and
material uncertainties.
� Microstructural analysis to investigate the early stages

of fatigue damage.
� Validation of the STSA technique for fatigue damage

monitoring under different conditions, such as vari-
able-amplitude block loading and spectral loading.

References

[1] Ozekici S. Reliability and maintenance of complex systems, vol. 154,
NATO Advanced Science Institutes (ASI) Series F: Computer and
Systems Sciences, Berlin, Germany, 1996.
[2] Meggiolaro M, Castro J. Statistical evaluation of strain-life fatigue
crack initiation predictions. Int J Fatigue 2004;26:463–76.

[3] Ishihara S, McEvily A. Analysis of short fatigue crack growth in cast
aluminium alloys. Int J Fatigue 2002;24:1169–74.

[4] Bjerkén C, Melin S. A tool to model short crack fatigue growth using
a discrete dislocation formulation. Int J Fatigue 2003;25:559–66.

[5] Ramsamooj D. Analytical prediction of short to long fatigue crack
growth rate using small- and large-scale yielding fracture mechanics.
Int J Fatigue 2003;25:923–33.

[6] Pathria R. Statistical mechanics. Elsevier Science and Technology
Books; 1996.

[7] Sobczyk K, Spencer B. Random fatigue: Data to theory. Boston,
MA: Academic Press; 1992.

[8] Ott E. Chaos in dynamical systems. Cambridge University Press; 1993.
[9] Keller E, Ray A. Real time health monitoring of mechanical

structures. Struct Health Monitor 2003;2(3):191–203.
[10] Grondel S, Delebarre C, Assaad J, Dupuis J, Reithler L. Fatigue

crack monitoring of riveted aluminium strap joints by lamb wave
analysis and acoustic emission measurement techniques. NDT & E
Int 2002;35:137–46.

[11] Cook D, Berthelot Y. Detection of small surface-breaking fatigue
cracks in steel using scattering of rayleigh waves. NDT & E Int
2001;34:483–92.

[12] Zilberstein V, Walrath K, Grundy D, Schlicker D, Goldfine N,
Abramovici E, et al. Mwm eddy-current arrays for crack initiation
and growth monitoring. Int J Fatigue 2003;25:1147–55.

[13] Witney A, Li YF, Wang J, Wang MZ, DeLuccia JJ, Laird C.
Electrochemical fatigue sensor response to Ti-6 wt.% Al-4 wt.% v and
4130 steel. Philos Mag 2004;84(3–5):331–49.

[14] Yang B, Liaw PK, Wang G, Peter WH, Buchanan R, Yokoyama Y,
et al. Thermal-imaging technologies for detecting damage during
high-cycle fatigue. Metall Mater Trans A 2004;35A:15–24.

[15] Baram J. Fatigue-life prediction by an order statistics treatment of
acoustic-emission signals. Exp Mech 1993;33:189–94.

[16] Harris DO, Dunegan HL. Continuous monitoring of fatigue–crack
growth by acoustic-emission techniques. Exp Mech 1974;14:71–80.

[17] Lee KY. Cyclic ae count rate and crack growth rate under low cycle
fatigue fracture loading. Eng Fracture Mech 1989;34(5/6):1069–73.

[18] Lysak MV. Development of the theory of acoustic emission by
propagating cracks in terms of fracture mechanics. Eng Fracture
Mech 1996;55(3):443–52.

[19] Scala M, Cousland SM. Acoustic emission during fatigue crack
propagation in the aluminium alloys 2024 and 2124. Mater Sci Eng
1983;61:211–8.

[20] Zilberstein V, Grundy D, Weiss V, Goldfine N, Abramovici E,
Newman J, et al. Early detection and monitoring of fatigue in high
strength steels with mwm-arrays. Int J Fatigue 2005;27:1644–52.

[21] Bai HS, Yu LY, He (Ho) JW. A monitoring system for contact
fatigue crack testing. NDT Int 1989;22(3):162–7.

[22] Yusa N, Janousek L, Rebican M, Chen Z, Miya K, Chigusa N, et al.
Detection of embedded fatigue cracks in inconel weld overlay and the
evaluation of the minimum thickness of the weld overlay using eddy
current testing. Nucl Eng Des 2006;236(18):1852–9.

[23] Anson L, Chivers R, Puttick K. On the feasibility of detecting pre-
cracking fatigue damage in metal matrix composites by ultrasonic
techniques. Compos Sci Technol 1995;55:63–73.

[24] Vanlanduit S, Guillaume P, Linden G. Online monitoring of fatigue
cracks using ultrasonic surface waves. NDT & E Int 2003;36:601–7.

[25] Rokhlin S, Kim JY. In situ ultrasonic monitoring of surface fatigue
crack initiation and growth from surface cavity. Int J Fatigue
2003;25:41–9.

[26] Kenderian S, Berndt T, Green R, Djordjevic B. Ultrasonic monitor-
ing of dislocations during fatigue of pearlitic rail steel. Mater Sci Eng
2003;348:90–9.

[27] Daw C, Finney C, Tracy E. A review of symbolic analysis of
experimental data. Rev Sci Instrum 2003;74(2):915–30.

[28] Ray A. Symbolic dynamic analysis of complex systems for anomaly
detection. Signal Process 2004;84(7):1115–30.



1114 S. Gupta et al. / International Journal of Fatigue 29 (2007) 1100–1114
[29] Chin S, Ray A, Rajagopalan V. Symbolic time series analysis for
anomaly detection: A comparative evaluation. Signal Process
2005;85(9):1859–68.

[30] Gupta S, Ray A, Keller E. Symbolic time series analysis of ultrasonic
data for early detection of fatigue damage. Mech Syst Signal Process.
Available from: www.ScienceDirect.com, in press.

[31] Rajagopalan V, Ray A. Symbolic time series analysis via wavelet-
based partitioning. Signal Process 2006;86(1):3309–20.

[32] Lind D, Marcus M. An introduction to symbolic dynamics and
coding. United Kingdom: Cambridge University Press; 1995.

[33] Badii R, Politi A. Complexity hierarchical structures and scaling in
physics. United Kingdom: Cambridge University Press; 1997.

[34] Hopcroft H, Motwani R, Ullman J. Introduction to automata theory,
languages, and computation. 2nd ed. Boston: Addison Wesley; 2001.

[35] Abarbanel H. The analysis of observed chaotic data. New York:
Springer-Verlag; 1996.

[36] Davidchack R, Lai Y, Bolt E, Dhamala H. Estimating generating
partitions of chaotic systems by unstable periodic orbits. Phys Rev E
2000;61:1353–6.

[37] Kennel M, Buhl M. Estimating good discrete partitions form
observed data: Symbolic false nearest neighbors. Phys Rev E
2003;91(8):084–102.
[38] Mallat S. A wavelet tour of signal processing 2/e. Academic Press;
1998.

[39] Cover TM, Thomas JA. Elements of information theory. New York:
John Wiley; 1991.

[40] Naylor AW, Sell GR. Linear operator theory in engineering and
science. New York: Springer-Verlag; 1982.

[41] Keller EE, Real time sensing of fatigue crack damage for informa-
tion-based decision and control. PhD thesis, 2001, Department of
Mechanical Engineering, Pennsylvania State University, State Col-
lege, PA.

[42] Nagy P. Fatigue damage assessment by nonlinear ultrasonic materials
characterization. Ultrasonics 1998;36:375–81.

[43] Cantrell J, Yost W. Nonlinear ultrasonic characterization of fatigue
microstructures. Int J Fatigue 2001;23:487–90.

[44] Rose J. Ultrasonic waves in solid media. Cambridge University Press;
2004.

[45] Suresh S. Fatigue of materials. Cambridge, UK: Cambridge Univer-
sity Press; 1998.

[46] Toolbox Wavelets, MATLAB. Mathworks Inc.
[47] Berkovits A, Fang D. Study of fatigue crack character-

istics by acoustic emission. Eng Fracture Mech 1995;51(3):
401–16.

http://www.ScienceDirect.com


ARTICLE IN PRESS

cate/physa
Physica A 359 (2006) 1–23

www.elsevier.com/lo
A

1

0

d

Correlation regimes in fluctuations of fatigue

6802, USA

A

crack growth

Nicola Scafettaa,�, Asok Rayb, Bruce J. Westa,c

aDepartment of Physics, Duke University, Durham, NC 27708, USA
bMechanical Engineering Department, The Pennsylvania State University, University Park, PA 1

cMathematics Division, Army Research Office, Research Triangle Park, NC 27709, US

Received 22 February 2005

Available online 1 June 2005
bstract

rowth of

tructures

k damage

y strong

ales. The

paper, is

dynamics

damage

iated by

estimated

e setting.
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notion of fractal statistics to describe the correlation of the fluctuations
fatigue crack growth in polycrystalline materials, such as ductile alloys. In th
we have investigated the fatigue fracture properties of 7075-T6 aluminum a
The importance of this investigation is that, in both physics and eng

literature, the fluctuations around fatigue crack growth in a typical mater
always been assumed to be random or uncorrelated noise. Consequen
associated models include uncorrelated random processes. For exam
agreement with the existent theory of micro-level fatigue cracking, Bogdan
Kozin [1] proposed a Poisson-like uncorrelated-increment jump model of
crack phenomena. An alternative approach to stochastic modeling of fatig
damage is to randomize the coefficients of an existing deterministic m
represent material inhomogeneity [2]. A third approach has been to
deterministic model of fatigue crack growth in addition to a random process
example Refs. [3–5].
The fatigue crack growth process can also be modeled by nonlinear st

differential equations using Itô statistics [6] that again presuppose randomne
fluctuations. Specifically, the Kolmogorov forward and backward d
equations, which require solutions of nonlinear partial differential equatio
been proposed to generate the statistical information required for risk an
mechanical structures [7,8]. These nonlinear partial differential equations h
been solved numerically and the numerical procedures are computationally i
as they rely on fine-mesh models using finite-element or combined finite-d
and finite-element methods [9]. Casciati et al. [10] have analytically approxim
solution of the Itô equations by Hermite moments to generate a pro
distribution function of the crack length.
Several studies have determined that the stochastic fluctuations obse

innumerable natural phenomena are not simply random, i.e., uncorrelated n
present correlation patterns that reveal complex and alternative dynamic
material microstructures. Thus, the purpose of the present research is to d
whether uncorrelated stochastic models such as those previously discusse
literature are realistic in describing the fluctuations around fatigue crack gr
polycrystalline materials, or whether such fluctuations present patterns tha
reveal complex material micro-structure requiring alternative correlated st
models. Two main classes of correlation patterns are commonly observed in
time series and these are denoted as short- and long-time correlations. Sh
correlations are characterized by phenomena that rapidly lose memory of
distant events. This happens, for example, when the autocorrelation functio
time series decays exponentially in the time separation between two elem
contrast, long-time correlations are characterized by autocorrelation functi
decay more slowly than (negative) exponentials; one example is the inverse
law decay.
A simple model, which has been extensively used in the interpretation of st

fluctuations in a time series fxig with i ¼ 1; 2; . . . ;N, is based on the evaluatio
mean-square displacement of the diffusion-like processes generated by tra
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X nðtÞ ¼
Xt

j¼1

xnþj .

If fxig is a white random sequence, the diffusion process is a well-known B
motion. The central limit theorem applied to the diffusion distribution gene
trajectories X nðtÞ yields a probability density that converges to a Gaussian
whose mean-square displacement converges asymptotically to

hX ðtÞ2i / ta ,

with a ¼ 1. In general, it is possible to have anomalous behavior yielding e
diffusion (a41) that has been known for 20 years to arise in dynamically
systems [11], or sublinear diffusive growth (ao1) that is familiar from di
fractal materials [12].
Anomalous diffusion reveals persistent (for an enhanced diffusive gro

antipersistent (for a sublinear diffusive growth) correlation patterns in the d
of a random walk. A persistent random walk is characterized by a proba
stepping in the direction of the previous step that is greater than that of r
directions. An antipersistent random walk is characterized by a proba
stepping in the direction of the previous step that is less than that of r
directions. Sometimes a momentarily initial enhanced or sublinear diffusive
lasting up to a certain time-scale, is generated by the statistical transitio
asymptotic regime of the diffusion process. For example, a simple discrete
walk is described by a binomial distribution that only asymptotically conve
Gaussian while initially presenting an enhanced diffusive growth [13]. Thu
autocorrelated time series will lose its correlation patterns if the temporal
the sequence is randomized.
There are a number of different theoretical approaches that explain the an

diffusion depicted in (2). One such explanatory model is that of an infinit
correlated random walk in which a ¼ 2H, where H is the Hurst exponen
interval 0pHp1 with the case H ¼ 0:5 corresponding to a simple rando
This model has been used extensively in the interpretation of fluctuations
series in the physical and life sciences [14] and is called fractional Gaussian no
Another kind of anomalous diffusion has to do with taking steps t
uncorrelated in time, but on a random or fractal, not a regular lattice. In th
model, an anomalous diffusion occurs because geometrical obstacles exis
length scales and such obstacles inhibit transport. Havlin and Ben-Avrah
point out that the anomalous exponent a is related to the fractal dimensio
random walk path on the lattice. There is a third possible explanation
anomaly in (2) called a Lévy walk [16] that was first used to understand t
diffusion [16] and yields a 
 3, which is consistent with Richardson’s
enhanced diffusion [17].
Physical examples of anomalous diffusion processes are earthquakes [18]

[16,19], turbulent fluid flow [20], relaxation of stress in viscoelastic materials



solar flares [22–24], and other processes with slip-stick dynamics. Recently, a multi-
fractal

e scaling
stem is
on from
tructure
growth
strongly
e-scales.
tence of
ystalline
ealed by

and an
ochastic
ition of
hich is
ation of
ents the
marized

ARTICLE IN PRESS

N. Scafetta et al. / Physica A 359 (2006) 1–234
scaling comparative analysis to distinguish Lévy walk intermittent noise from
Gaussian intermittent noise was suggested by Scafetta and West [25].
Finally, a physical system might be characterized by different values of th

exponent a at different scales [26]. Usually, this means that one sy
characterized by a non-self-affine structure. The scale at which the transiti
one scaling regime to another occurs indicates the scale at which the s
changes. In this work we determine that the fluctuations around the ballistic
of fatigue cracks in ductile alloys present such a scale transition from a
correlated regime at short-time scales to a random regime at longer tim
Properties, such as grain size distribution, degree of heterogeneity, the exis
microscopic defects, inclusions, twin boundaries and dislocations, of polycr
materials may contribute to the micro-mechanisms of fatigue fracture rev
the present analysis.
This paper is organized into six sections, including the present one,

appendix. Section 2 provides the underlying phenomenology of the st
damage measure. Section 3 presents Karhunen–Loève (KL) decompos
fatigue test data to formulate an estimate of the stochastic measure, w
statistically orthogonal to the estimation error. Section 4 focuses on identific
the model parameters and their probability distributions. Section 5 pres
results of model prediction by Monte Carlo simulation. The paper is sum
and concluded in Section 6 with recommendations for future research.
2. Measure of fatigue crack damage

y fitting
averages
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growth
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. In this
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s elastic
rack tip.
f fatigue
Erdogan
Traditionally fatigue crack growth models have been formulated b
estimated mean values of fatigue crack length ât, generated from ensemble
of experimental data, as functions of time in units of cycles [27,28]. R
Patankar [29] have formulated the state-space modeling concept of crack
based on fracture-mechanistic principles of the crack-closure concept [30]. T
space model has been validated by fatigue test data for variable-amplitud
loading, see for example Refs. [28,31,32].
The three panels in Fig. 1 show test data of cumulative fatigue crack grow

7075-T6 aluminum alloy under different cyclic loading [33]. It is important
that the crack growth curves do not increase smoothly, but they exhibit fluc
around an ideal smooth curve of crack growth representing ballistic growth
context, a major objective of the paper is to investigate the autoco
properties of these fluctuations with the smooth curve removed. In the follo
briefly review the theory and the standard phenomenological equations that
the fatigue crack growth.
In linear fracture mechanics, it is assumed that the stressed material remain

and undamaged everywhere, except in a small domain in the vicinity of the c
However, this view is not confirmed by experimental evidence and the process o
damage accumulation could occur throughout the stressed volume. Paris and
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Fig. 1. Experimental data of 7075-T6 aluminum alloy. (a) R ¼ 0:6 and Max stress ¼ 70:65MPa; (b)
R ¼ 0:6 and Max stress ¼ 69:00MPa; (c) R ¼ 0:6 and Max stress ¼ 47:09MPa.
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[27] originally developed a phenomenological model of crack growth rate, which
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depends on the stress history and is thus represented by a continuum rate
having the hereditary structure. This model has been subsequently modified
researchers (see, for example, citations in Refs. [34–36]) in the following form:

dât � ât � ât�dt ¼ hðDK
eff
t Þdt ,

with hð0Þ ¼ 0 and ât040 for tXt0, where ât is the estimated mean of the crack
time t during a stress cycle and dt is the time duration of the stress cycle; and DK

stress intensity factor range at time t, which is given by the experimentally v
empirical model

DK
eff
t ¼ DSt

ffiffiffiffiffiffiffiffiffiffiffiffi
pât�dt

p
F ðât�dtÞ ,

where DSt is the range (i.e., the difference between maximum and minimum v
the stress cycle at time t, which is directly related to the applied load. Expe
observations suggest that both duration and shape of a stress cycle are not rele
crack growth in ductile alloys at room temperature. A stress cycle is only char
by the minimum stress Smin and the maximum stress Smax, respectively, and is
as the ordered pair ðSmin;SmaxÞ. The empirical relation F ðÞ in Eq. (4) repre
geometry of the crack tip; for center-cracked specimens of half-width w with 0
at all tXt0, the structure of F ðÞ has been experimentally determined as [35]

F ðât�dtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

p
2w

ât�dt

� �r
.

The function hðÞ in Eq. (3) is a non-negative Lebesgue-measurable functio
dependent on the material and geometry of the stressed component. It has bee
in the fracture mechanics literature [35,36] that, for center-cracked specimens o
alloys, the function hðÞ obeys the power law:

hðDK
eff
t Þ ¼ ðDK

eff
t Þ

m ,

where the exponent parameter m is dependent on the material of the
component; for ductile alloys, m is in the range of 2.5–5.0 [35].
Eqs. (3)–(6) are now combined to formulate a mean-value model of fatig

growth for center-cracked specimens of ductile alloy materials:

dât / DSt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ât�dt sec

p
2w

ât�dt

� �r� �m

dt ,

with ât040 and tXt0.
Following Sobczyk and Spencer [9] and the pertinent references cited the

randomize the deterministic mean-value model, Eq. (7), to obtain a stochast
for the rate of crack growth. The stochastic model of continuous crack lengt
upon the model structure proposed by Ray [29,37], and is given by

dctðzÞ ¼ Oðz; tÞ DSt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctðzÞ

cosððp=2ÞctðzÞÞ

s" #m

dtffi Oðz; tÞ
ðDSt

ffiffiffiffiffiffiffiffiffi
ctðzÞ

p
Þ
m

1�mððp=4ÞctðzÞÞ
2
d



where the random sample z signifies a specimen or a machine component on
length
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ferential
th ctðzÞ
ld stress
ensure

40 for
pendent
er m in

cess, we

(9)

anufac-
ballistic
presents
nts that
rimarily
f crack

another
endence
urement
affected
t loss of
lue, i.e.,
th rate
nstraint

ike ctðzÞ
ps yield

(10)

crement

(11)

ARTICLE IN PRESS

N. Scafetta et al. / Physica A 359 (2006) 1–23 7
which a fatigue test is conducted; the dimensionless stochastic crack
ctðzÞ is normalized with respect to the half width w, i.e., the mean value ĉt

Eq. (8) is a continuous stochastic version of Eq. (7), where the dif
of the stochastic crack length dctðzÞ is a function of the crack leng
at time t and the normalized stress DSt � DSe

t=Sy, where Sy is the yie
of the material. The condition 0oct0pcto4=p

ffiffiffiffi
m
p

is imposed to
non-negativity of the crack length increment almost surely, i.e., dctðzÞ
almost all samples z. The stochastic process of crack growth is largely de
on the second-order random process Oðz; tÞ and the exponent paramet
Eq. (8).
To investigate the stochastic properties of the fatigue crack growth pro

separate Oðz; tÞ into two parts as

Oðz; tÞ ¼ O0ðzÞ½1þ O1ðz; tÞ� ,

where the time-independent component O0ðzÞ represents uncertainties in m
turing, for example in machining, and makes a major contribution to the
component of the crack growth; the time-dependent component O1ðz; tÞ re
uncertainties in the material micro-structure and crack length measureme
may vary with crack propagation in a sample z. This latter component is p
responsible for the small fluctuations around the ballistic component o
growth whose autocorrelation properties we study.
We postulate that O0 and O1 in Eq. (9) are statistically independent of one

for all tXt0, where t0 is the initial time. The rationale for this indep
assumption is that inhomogeneity of the material micro-structure and meas
noise, associated with each test specimen and represented by O1ðz; tÞ, are un
by the uncertainty O0ðzÞ due, for example, to machining operations. Withou
generality, we assume that the fluctuations in time have a zero mean va
hO1ðz; tÞi ¼ 0 for all tXt0. Furthermore, non-negativity of the crack grow
dctðzÞ in Eq. (8) is assured in the almost sure (a.s.) sense by imposing the co
O0ðzÞX0 with probability 1 (w.p. 1).
For notational brevity, let us suppress the term z in random processes l

and Oðz; tÞ. A combination of Eqs. (8) and (9) and few simple algebraic ste
the following equation for each sample point z:

c
�m=2
t �m

p
4

� �2
c
2�m=2
t

� �
dct ¼ ðDStÞ

mO0½1þ O1ðtÞ�dt w:p: 1 .

Pointwise integration of Eq. (10) yields the solution of fatigue damage in
from the initial time t0 to the current time t as

cðt; t0Þ ¼
Z t

t0

ðDSt0 Þ
mO0½1þ O1ðt0Þ�dt0 w:p: 1 .



An explicit expression of the stochastic diffusion process cðt; t0Þ is obtained by
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integrating the left-hand side of Eq. (10) and is given by

cðt; t0Þ �
c
1�m=2
t � c

1�m=2
t0

1�m=2

" #
�m

p
4

� �2 c
3�m=2
t � c

3�m=2
t0

3�m=2

" #
,

where cðt; t0Þ represents a dimensionless non-negative measure of fatigu
damage increment from the initial instant t0 to the current instant t as a fun
the normalized crack length. The constant parameter m in (12) is in the
2.5–5 for ductile alloys and metallic materials ensuring that ð1�m=2Þ
ð3�m=2Þ40. The diffusion process cðt; t0Þ is almost surely continuous beca
a continuous function of the crack length process ct w.p. 1. Both ct and cð
measurable functions although their (probability) measure spaces are diffe
essence, the probability of cðt; t0Þ, conditioned on the initial crack length ct0 ,
a stochastic measure of fatigue crack damage increment at the instant t start
the initial instant t0.
For a constant stress range DS, we carry out the time integration in Eq

obtain

cðt; t0Þ ¼ ðDSÞm½O0ðt� t0Þ þYðt; t0Þ� ,

where the second term on the right-hand side is the time integral

Yðt; t0Þ � O0

Z t

t0

O1ðt0Þdt0 .

Thus, the stochastic diffusion process cðt; t0Þ according to model (13) is give
sum of a random component, linear in time, plus a time-fluctuating com
proportional to the diffusion process Yðt; t0Þ.
The objective is to validate the model in Eq. (11) by decomposing the

increment measure cðt; t0Þ into two parts that are mutually statistically inde
and, at the same time, equivalent to the two components of the right-hand
Eq. (13). That is, we would like to obtain an estimate ĉðt; t0Þ of the st
damage increment measure cðt; t0Þ and of the fluctuations ~cðt; t0Þ around
from the initial instant t0 to the current instant t such that

cðt; t0Þ ¼
ms ĉðt; t0Þ þ ~cðt; t0Þ ,

where ĉðt; t0Þ is statistically equivalent to DSmO0ðt� t0Þ, and ~cðt; t0Þ is sta
equivalent to ðDSÞmYðt; t0Þ of Eq. (13).
To test the validity of the above postulate that the two component

multiplicative random process O0ðzÞ and O1ðz; tÞ in Eq. (9) are sta
independent, we require that the zero-mean estimation error ~cðt; t0Þ be sta
orthogonal to the estimate of the increment measure ĉðt; t0Þ in the Hilbe
L2ðPÞ defined by the probability measure P. As such ĉðt; t0Þ is the best linear
of the stochastic diffusion process. Based on mean-square continuity of the
measure cðt; t0Þ, the next section elaborates on the model structure laid



Eq. (15). To this end, we analyze experimental data sets of random fatigue via KL
ong the
tal data
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decomposition [38–40] that guarantees the above statistical orthogonality am
components of the decomposition. In Section 4 we also use these experimen
sets to identify the model parameters.
3. Karhunen–Loève decomposition of experimental data

stify the
data of
duct the
For all
¼ 9mm,
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In this section we analyze fatigue test data via KL decomposition [40] to ju
model structure postulated in Eqs. (11) and (12). We use the experimental
random fatigue crack growth in the 7075-T6 aluminum alloy [33] and con
tests under different constant load amplitudes at ambient temperature.
experiments the half-width is w ¼ 50:8mm, the initial crack length is at0

and, therefore, the initial dimensionless crack length is ct0 ¼ at0=w ¼ 0
probability 1. The Ghonem data sets were generated for 60 center-cracked sp
each at three different constant load amplitudes: (i) Set #1 with peak nomin
of 70.65MPa (10.25 ksi) and stress ratio R � Smin=Smax ¼ 0:6 for 54,000 cy
effective stress range DSe ¼ 15:84MPa; (ii) Set #2 with peak nominal s
69.00MPa (10.00 ksi) and R ¼ 0:5 for 42,350 cycles, and DSe ¼ 17:80MPa;
Set #3 with peak nominal stress of 47.09MPa (6.83 ksi), R ¼ 0:4 for 73,50
and DSe ¼ 13:24MPa. The three experimental data sets [33] are shown in t
panels of Fig. 1.
The KL decomposition requires the mean and covariance of the st

measure of damage increment cðt; t0Þ which are expressed as

mcðt; t0Þ � hcðt; t0Þi ,

Cccðt1; t2; t0Þ � h½cðt1; t0Þ � mcðt1; t0Þ�½cðt2; t0Þ � mcðt2; t0Þ�i .

The covariance function Cccðt1; t2; t0Þ in Eq. (16) is continuous at t1 ¼ t2 ¼

tXt0. Hence, the process cðt; t0Þ is mean-square (ms) continuous based on a s
theorem of mean-square calculus [38,39]. The mean and covariance are calc
the 60 available center-cracked specimens in each case.
Since only finitely many data points at n discrete instants are availab

experiments, an obvious approach to the analysis of the damage estima
discretize over the finite time horizons ½t0; t� so that the stochastic proces
becomes the n-dimensional random vector c. Consequently, the covariance
Cccðt1; t2; t0Þ in Eq. (16) is reduced to a real semipositive-definite ðn� nÞ sy
matrix Ccc. Since the experimental data were collected at sufficiently close i
Ccc contains pertinent information of the crack damage process. The n (r
negative) eigenvalues of Ccc are ordered as l1Xl2X � � �Xln, with the corres
eigenvectors, j1;j2; . . . ;jn, which form an orthogonal basis of Rn fo
decomposition. The KL decomposition also ensures that the n random coeffi
the basis vectors are statistically orthogonal, i.e., they have zero mean
mutually uncorrelated. These random coefficients form a random vec
½x1; x2; . . . ; xn�

T having the covariance matrix CXX ¼ diagðl1; l2; . . . ; lnÞ, lead
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c¼ms
hci þ

Xn

j¼1

xjf
j .

It was observed by Ray [37] that the statistics of crack length are dominate
random coefficient corresponding to the principal eigenvector (i.e., the eig
associated with the largest eigenvalue) and that the combined effects
remaining eigenvectors are small. Therefore, the signal c in Eq. (17) is expr
the sum of a principal part and a (zero-mean) residual part that are m
statistically orthogonal:

c¼ms
hci þ x1f

1

principal part

þ
Xl

j¼2

xjf
j

residual part

.

Thus, as Eq. (15) requires, the vector c is expressed as the sum of the princ
residual parts with equality in the mean square (ms) as

c¼ms ĉþ ~c ,

where the principal part is the damage estimate

ĉ � hci þ x1f
1 ,

the residual part is the estimation error representing the fluctuations aro
mean damage estimate (20)

~c �
Xn

j¼2

xjf
j ,

and the resulting (normalized) mean square error [40] is

e2rms �
TracefCov½c� ĉ�g

TracefCov½c�g
¼

Pn
j¼2ljPn
j¼1lj

.

The KL decomposition of fatigue test data sets reveals that 0:01pe2rmsp0:
three data sets.
The principal eigenvector f1ðtÞ, associated with the largest eigenvalue l1

fits the ramp function ðt� t0Þ for each of the three data sets in Fig. 1; this is s
Fig. 2 for the data set 1. Comparing the terms on the right-hand side of the
model in Eq. (19) with those of the continuous model in Eq. (13), it is reaso
have the random variable DSm½O0 � m0� equal (in ms sense) to the random co
x1 of the principal eigenvector j1ðtÞ. Applying the lemma from the app
mean-square equivalence between the KL decomposition model in Eq. (19)
from the test data and the postulated model in Eq. (17) is established as

hcðtÞi
discrete model ðtest dataÞ



ms

DSmm0ðt� t0Þ
continuous model ðconstitutive relationÞ

,
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Fig. 2. (a) Curves cðtÞ obtained with Eq. (12) for the experimental data of 7075-T6 aluminum alloy for set
#1. The value of m used is m ¼ 4:0. (b) Principal part of the KL decomposition against (c) the linear
approximation of the continuous model made in Eqs. (23) plus (24) of the curves cðtÞ.
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discrete model ðtest dataÞ continuous model ðconstitutive relationÞ

Xn

j¼2

xjf
j

discrete model ðtest dataÞ



ms

ðDSÞmYðt; t0Þ
continuous model ðconstitutive relationÞ

.

Thus, we have ĉ ¼ hcðtÞi þ x1f
1
ðtÞ 
 DSmO0ðt� t0Þ, and ~c ¼

Pn
j¼

DSmYðt; t0Þ as assumed in Eq. (15). The two entities on the left-hand side
(24) and (25) are mutually statistically orthogonal by construction. Similarly
of Eq. (15), the zero-mean estimation error ~cðt; t0Þ is statistically orthog
ĉðt; t0Þ in the Hilbert space L2ðPÞ defined by the probability measure P as
with the stochastic process cðt; t0Þ. As such ĉðt; t0Þ can be viewed as the be
estimate of cðt; t0Þ with the least error ~cðt; t0Þ in the mean-square sense.
It follows from Eqs. (15) to (25) that the uncertainties associated

individual sample resulting from the damage measure estimate ĉðt; t0Þ domi
cumulative effects of material inhomogeneity and measurement noise
estimation error ~cðt; t0Þ unless ðt� t0Þ is small. Therefore, from the perspe
material-health monitoring, risk analysis, and remaining life prediction w
inter-maintenance interval ðt� t0Þ is expected to be large, a reasonably
identification of the mean m0 and variance s

2
0 of the random parameter O0 is

while the role of the diffusion process Yðt; t0Þ is relatively less significa
observation is consistent with the statistical analysis of fatigue test data by D
[2], where the random process described by Eq. (25) is treated as the ze
residual. Ditlevsen [2] also observed largely similar properties by statistical
Nevertheless, the stochastic properties of fluctuating function Yðt; t0Þ, w
investigate, can disclose important information about the material structure
during crack damage.
4. Data analysis

between
and the
er m by
ring the

q. (12).
g to the
s model
ets look
qs. (23)
ion, and
In this section we investigate the stochastic equivalence made in Eq. (25)
the residual component of the signal as obtained by the KL decomposition
linear approximation. The first step is to evaluate the exponent paramet
fitting the data of the crack growth with Eq. (8). The fit is done by conside
crack increments from all 60 cases for each of the three experiments.
By using the empirical values of m it is possible to estimate cðt; t0Þ via E

The three plots in Fig. 2 compare the curve cðt; t0Þ, its principal part accordin
KL decomposition and its linear approximation according to the continuou
made in Eqs. (23) plus (24) for set #1: the figures for the other data s
qualitatively similar. Fig. 3 shows the quality of the equivalence made in E
plus (24) between the discrete model, which makes use of the KL decomposit
the continuous model, which makes use of a linear approximation.



Fig. 3 shows the fitted data and the results for set #1; the figures for the other sets
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Fig. 3. Increments dct against crack length ct fit with Eq. (8) (solid curve) for the experimental data of

7075-T6 aluminum alloy for the set #1: ODSm ¼ 0:0019� 0:0002 and m ¼ 4:0� 0:2.
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are similar. The parameters for all the three sets are listed below.

 OðzÞDSm ¼ 0:0019� 0:0002 and m ¼ 4:0� 0:2 for set #1;

m r set #2;

r set #3.

 OðzÞDS ¼ 0:0022� 0:0002 and m ¼ 3:8� 0:2 fo
 OðzÞDSm ¼ 0:0018� 0:0002 and m ¼ 4:7� 0:2 fo
ual part
residual
, in two
al parts;
tatistical

ðt� 1Þ.
residual
e linear
tandard
hown in
residual
del.
YðtÞ, see
stic part
4.1. Diffusion standard deviation analysis of the fluctuations

We evaluate the stochastic equivalence made in Eq. (25) between the resid
of the discrete model, which makes use of the KL decomposition, and the
part of the continuous model, which makes use of a linear approximation
steps. Step 1 compares the size of the increments of the correspondent residu
and Step 2 adopts the standard deviation analysis (SDA) which is a s
formalism to study the long-time correlation in a fractal time series.
Because YðtÞ ¼ residual part, the increments are given by yt ¼ YðtÞ �Y

We calculate the standard deviation, sy, of the increments fytg for each
component estimated by means of the KL decomposition and of th
approximation, respectively. Finally, we calculate the average of the s
deviation, hsyi, between the 60 sy for each of the three cases. The results s
Table 1 demonstrate the compatibility of the increments obtained with the
parts of the KL decomposition and the residual part of the continuous mo
Now, let us suppose that a generic residual curve is given by the function

Eq. (25), that in this specific case is a kind of random walk around the balli
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Table 1

Values of the fitting parameters m and s of the lognormal distribution (29) of the histograms shown in
Fig. 7

m s

Set #1 0:58� 0:05 0:20� 0:02
Set #2 0:74� 0:05 0:16� 0:02
Set #3 0:42� 0:05 0:45� 0:04
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linear component of the continuous model. The SDA determines the scalin
standard deviation of the diffusion process defined as

DðtÞ ¼
1

sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�t
t¼0

½Yðtþ tÞ �YðtÞ �Yðtþ tÞ �YðtÞ�2

N � t� 1

vuut ,

where

Yðtþ tÞ �YðtÞ ¼
XN�t
t¼0

Yðtþ tÞ �YðtÞ
N � t

,

N is the number of data points and times t and t are measured in cycle perio
It is easy to realize that Eq. (27) ensures that Dðt ¼ 1Þ ¼ 1. In the pre
fractal statistics we would have, based on the discussion of anomalous diff
Section 1,

DðtÞ / tb ¼ ta=2 .

Fig. 4 shows the SDA for the residual part of the KL decomposition. Eac
graphs concerning the same crack data look quite similar. All three sets o
show that the curves have a initial scaling exponent approximately within t
0:5obo0:9. The mean curve value is represented by the curves with black c
Fig. 4. These early time values of b, interpreted in terms of the random
discussed in Section 1, indicate that the residual parts of the signal ma
persistent behavior, i.e., a persistent correlation that lasts at least 10 con
cycles on average.
For 10oto100 the data present a slight antipersistency with 0:4o

Consequently, the residual process is initially strongly persistent, but asymp
it is almost random. We observe that for 10oto100 the mean scaling exp
approximately H ¼ 0:45 in the case of the linear continuous model and
slightly larger than the scaling exponent in the KL discrete decompositio
change in scaling is due to the fact that the principal part obtained with
decomposition extracts more information from the original signal than d
simple linear approximation.
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a certain t as detected by Eq. (1) could also be an artifact related not
autocorrelation pattern in the data but to the transition from the initial geo
properties of the distribution of the events fxig of a time series to the Gaussia
of the asymptotic diffusion distribution. To check that the persistent beha
to10 observed in the plots of Fig. 4 expresses real correlation patterns, w
SDA of the data after randomizing the time series of the increments fytg. Th
each crack data first we have the sequence fytg defined as yt ¼ YðtÞ �Yðt�
we shuffle fytg and obtain a new sequence fy0tg and generate a ne
Y0ðtÞ ¼

Pt
i¼1 y

0
i, and finally we apply SDA to the new curve Y0ðtÞ. Fig.
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Fig. 5. SDA for the residual part of the KL decomposition after shuffling of the increments fytg. Note the
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data 1) KL.
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decomposition; for the other data sets the results are similar. Fig. 5 clearl
that after shuffling of the temporal order of the single increments fytg, the
the new sequence gives a scaling value of approximately H ¼ 0:5 and the p
behavior forto10 observed in Fig. 4 is absent. Thus, we conclude that the p
behavior for to10 observed in Fig. 4 expresses real correlation pattern
fluctuations of crack growth.
Fig. 6 also shows that the distributions of the scaling exponent seems to

uniform in the interval 0:5obo0:9 (with a probability P40:9%) or, per
Fig. 6c shows better, there might be a slight prominence or skewness in favor
value of b. In any case, all figures show that the distribution of the scaling e
for the residual components of the curve obtained with the KL decompositio
linear component of the continuous model practically coincide for all three d
This equivalence suggests that the continuous linear model essentially
not only the dominant properties of the signal, as obtained through
decomposition, see Eq. (24), but also the stochastic properties of the residua
as suggested in Eq. (25).

4.2. Statistics of damage measure estimates

We investigate the statistics of the damage measure estimates using a lo
distribution. This is in keeping with the analysis of several investigato
assumed the crack growth rate in ductile alloys is lognormal-distributed
example, the citations in Sobczyk and Spencer [9]). Other investigators have
the crack length as being lognormal-distributed [37], rather than the



fluctuations. The results of KL decomposition in Eqs. (16)–(19) are consistent with
fatigue
random
t0Þ is a
9] have
lating a
nship to

g to the
as those
ðx;m; sÞ:

(29)

meters m

(30)
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with the KL decomposition and the continuous linear model for each of the three crack data sets. Fig. 7d
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these assumptions because O0, which dominates the random behavior of
crack growth, can be considered to be a perfectly correlated (ballistic)
process, whereas the non-negative, multiplicative uncertainty term Yðt;
weakly (positively) correlated random process. Yang and Manning [3
presented an empirical second-order approximation to crack growth by postu
lognormal distribution of a parameter that does not bear any physical relatio
DS but is, to some extent, similar to O0ðDSÞ in the present model.
Fig. 7 shows the histogram of the slopes DSmO0 of the curves accordin

continuous model for the experimental data presented by Eq. (25), such
shown in Fig. 3c. The histograms are fitted with the lognormal distribution p

pðx; m;sÞ ¼
1

x
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

ðlnðxÞ � mÞ2

2s2

� �
.

The measured parameters m and s are recorded in Table 2. Finally, the para
and s are functions of m0 ¼ hxi and s20 ¼ hðx� m0Þ

2
i as follows:

m � lnðm0Þ � s2=2



ARTICLE IN PRESS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5

pr
ob

ab
ili

ty
 d

en
si

ty
  p

(∆
S

m
Ω

0)
 (

x1
03 )

∆SmΩ0 (x10-3)

∆SmΩ0 (x10-3)

∆SmΩ0 (x10-3)

crack data 1 p(x,0.58,0.20)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5

pr
ob

ab
ili

ty
 d

en
si

ty
  p

(∆
S

m
Ω

0)
 (

x1
03 ) crack data 2

p(x,0.74,0.16)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5

pr
ob

ab
ili

ty
 d

en
si

ty
  p

(∆
S

m
Ω

0)
 (

x1
03 ) crack data 3 p(x,0.42,0.45)

(a)

(b)

(c)

Fig. 7. Histogram of the quantities DSmO0 of the continuous model of the experimental data presented by
Eq. (25). The histograms are fitted with a lognormal distribution pðx; m; sÞ shown in Eq. (29).

N. Scafetta et al. / Physica A 359 (2006) 1–2318



and � �" #
(31)

expected

(32)

h of the

(33)

estimate

ARTICLE IN PRESS

Table 2

Mean standard deviation of the increments of the residual part obtained with the KL decomposition and

the residual part of the continuous model

KL Linear model

Set #1: hsyi ¼ 0:0024� 0:001 0:0025� 0:001
Set #2: hsyi ¼ 0:0024� 0:001 0:0025� 0:001
Set #3: hsyi ¼ 0:0038� 0:003 0:0043� 0:003

N. Scafetta et al. / Physica A 359 (2006) 1–23 19
s2 � ln 1þ
s0
m0

2

.

Since the random parameter DSmO0 is not explicitly dependent on time, its
value is obtained from Eq. (13) as

m0 ¼ hDSmO0i ¼
cðt; t0Þ
t� t0

� �
,

which is readily determined from the ensemble average estimate from eac
data sets. Asymptotically in time we find for the variance of DSmO0

s20 ¼ hðDSmO0 � m0Þ
2
i ¼

cðt; t0Þ
t� t0

� �2* +
� m20 ,

so that the variance can be determined directly from the ensemble average
from each of the data sets.
5. Crack model simulation

ue crack
sis made
uces the
e crack
nerating
mage in
rvations
eps:

ormally
This section presents the results of Monte Carlo simulation of the fatig
damage process based on the model as it emerges from the stochastic analy
in the previous section. The model that we introduce approximately reprod
stochastic properties of both the ballistic or principal part of the fatigu
growth and the associated fluctuations around it. The model consists in ge
independently the fluctuation and the principal part of the fatigue crack da
such a way that they are statistically equivalent to the correspondent obse
and then combining them. The crack model simulation is based on four st

 Principal part or ballistic growth: We generate 60 values of DSmO0, logn

n by the
orded in

is shown

0 fractal
nce and
distributed according to Eq. (29), where the parameters m and s are give
actual fit of the phenomenological distribution shown in Fig. 6 and rec
Table 2. A sample of the curves DSmO0ðt� t0Þ simulating the data set #1
in Fig. 8b.
 Residual part or fluctuations around the ballistic growth: We generate 6
Gaussian noise sequences fy0tg each of length N of the original time seque



with scaling exponent uniformly distributed in the interval 0:5obo0:9. The
iation of
le 1. To
almost
f length
uffle the
ries fytg.
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Fig. 8. Synthetic data of crack length for set #1. (a) SDA of the residual component; (b) ballistic growth;

(c) damage increment cðtÞ; (d) crack length, compare with Fig. 1a.
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standard deviation of each sequence is set equal to the mean standard dev
the increments of the residual component of the data reported in Tab
simulate the change of scaling exponent from persistent (for to10) to
random (for t410), we section each fractal time series fy0tg into segments o
10 within which the data would conserve the correlation, and finally we sh
position of these segments in the time series to reproduce a new time se
These new time series will have persistent correlation for to10 and unco
randomness for t410. Finally, the curve YðtÞ is obtained by integrating
sequence fytg and by detrending from it its linear component because t
YðtÞ is supposed to have a zero mean. The SDA sample data analys
example of these synthetic residual data simulating the data set #1 is s
Fig. 8a.
 The ballistic growth estimated in the principal part and the associated fluc
of the residual part are combined according to Eq. (18) to obtain a si
ata sets.

ting the
damage increment measure cðt; t0Þ for all 60 sequences and for the three d
Fig. 8c shows the simulated damage increment measure cðt; t0Þ simula
data set #1.



 Finally, by using the respective value of the exponent m, reported in Section 4, for
Eq. (12)
, as seen
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the data set #1 and a one-dimensional root-finding computer algorithm,
is inverted to obtain a simulated normalized crack length growth curves ct

in Fig. 8d. The similitude between Figs. 8d and 1a is noteworthy and th
for the other data sets look qualitatively very similar; hence they are not p
in this paper.

6. Summary and conclusions

This paper presents a stochastic measure of fatigue crack damage. W
focused on the correlation properties of the fluctuations around fatigu
growth in ductile alloys. The model of crack damage measure indicates
fluctuations around fatigue crack growth present strong correlation pattern
short-time scales and are uncorrelated for larger time scales. These findings
that the random stochastic models adopted in the present literature for de
the crack growth dynamics should be augmented with short-time co
stochastic models.
The damage measure is modeled as an anomalous diffusion process

obtained as a continuous function of the current crack length and of the init
length. Perhaps, the randomness in the damage measure estimate accrues p
from manufacturing uncertainties such as defects generated during m
operations because such macro-defects are expected to drive the ballistic gr
cracks. This randomness is captured by a single lognormal-distributed
variable. Instead, the resulting diffusion process of estimated fluctuations
the ballistic growth of fatigue cracks is probably due to the inhomogeneit
structural material because it is primarily associated with the micro-stru
the material, and is represented by a non-stationary fractional Brownian
model. This non-stationarity manifests itself in the two scaling expone
urring at different scales. Specifically, we observe a clear transition in t
dard deviation analysis from an early time slope representing a strong per
b 
 0:7 lasting for approximately t 
 10 to a different slope asymptotically
representing randomness, b 
 0:5. This transition occurring at t 
 10
scaling regime to another indicates the scale at which a structure chang
ductile alloys occurs.
The constitutive equation of the damage measure is based on the ph

fracture mechanics and is validated by KL decomposition of fatigue test
7075-T6 aluminum alloys at different levels of (constant-amplitude) cyclic lo
damage estimate is statistically orthogonal to the resulting zero-mean es
error in the Hilbert space L2ðPÞ defined by the probability measure of the st
damage measure. As such, the damage estimate is often viewed as a best leas
linear estimate. However, we find that the KL decomposition is sta
equivalent to the linear approximation in the continuum model that can be th
to simulate the fatigue crack growth in ductile alloys.



Acknowledgements

e Island
orted in
rant no.
support

ARTICLE IN PRESS

N. Scafetta et al. / Physica A 359 (2006) 1–2322
The authors are grateful to Professor H. Ghonem of University of Rhod
for providing the test data of random fatigue crack growth. The work rep
this paper has been supported in part by the Army Research Office under G
DAAD190110640. The first author thanks the Army Research Office for the
under Grant DAAG5598D0002.
Appendix: A supporting lemma

yðz; tÞ be
Lemma. Let AðzÞ and BðzÞ be second-order real random variables; xðz; tÞ and
rocesses;
t, for all
zero-mean mean-square continuous (possibly non-separable) real random p

and the real gðtÞ be almost everywhere continuous on an interval D such tha

t 2 D, the following conditions hold:

(i) AðzÞ ¼ms
BðzÞ;
; tÞi ¼ 0.
(ii) hAðzÞxðz; tÞi ¼ 0 and hBðzÞyðz
identity:
Then, the following mean-square
k, 1985.
AðzÞgðtÞ þ xðz; tÞ ¼ms
BðzÞgðtÞ þ yðz; tÞ

yields

xðz; tÞ ¼ yðz; tÞ

hAðzÞyðz; tÞi ¼ 0

hBðzÞxðz; tÞi ¼ 0

9>=
>; 8t 2 D .

Proof. It follows from the above mean-square identity that

Var½fAðzÞ � BðzÞggðtÞ þ fxðz; tÞ � yðz; tÞg� ¼ 0

which may be expanded to yield

Var½AðzÞ � BðzÞ�gðtÞ2 þ Var½xðz; tÞ � yðz; tÞ�

þ hfAðzÞ � BðzÞgfxðz; tÞ � yðz; tÞgigðtÞ ¼ 0 .

A combination of condition (i) and Schwarz inequality yields

Var½xðz; tÞ � yðz; tÞ� ¼ 0

and the remaining two identities follow from condition (ii). &
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This paper reviews, expands, and clarifies the underlying concepts of a signed real measure of

regular languages, which has been used as a novel tool for synthesis of discrete event

supervisory control systems. The language measure is constructed upon the principles of

automata theory and real analysis. It allows total ordering of a set of partially ordered

sublanguages of a regular language for quantitative evaluation of the supervised behaviour

of deterministic finite state automata (DFSA) under different supervisors. In the setting of

the language measure, a supervisor’s performance is superior if the supervised plant is more

likely to terminate at a good marked state and/or less likely to terminate at a bad marked

state. The computational complexity of the language measure algorithm is polynomial in

the number of DFSA states.

1. Introduction

Discrete event systems belong to a special class of
dynamical systems. The states of a discrete event
system may take discrete (or symbolic) values and

change only at (possibly asynchronous) discrete instants
of time, in contrast to the familiar continuously varying
dynamical systems of the physical world, which can be

modelled by differential or difference equations. The
dynamics of many human-engineered systems evolve
asynchronously in time via complex interactions of

various discrete-valued events with continuously varying
physical processes. The relatively young discipline of
discrete event systems has undergone rapid growth

over the last three decades with the evolution of
human engineered complex systems, such as integrated

control and communication systems, distributed sensing
and monitoring of large-scale engineering systems,
manufacturing and production systems, software

fault management, and military Command, Control,
Computer, Communication, Intelligence, Surveillance,
and Reconnaissance (C4ISR) systems.
The discipline of discrete event systems was initiated

with simulation of human-engineered processes about

four decades ago in the middle of nineteen sixties. The
art of discrete event simulation emerged with the devel-
opment of a simulation software package, called GPSS,
that was followed by numerous other software simula-
tion tools, such as SIMSCRIPT II.5, SLAM II, and
SIMAN (Law and Kelton 1991). Shortly thereafter,

computer scientists and control theorists entered the
field and brought in theoretical concepts of languages
and automata in modelling discrete event systems. In
the late nineteen sixties, Arbib (see Kalman et al. 1969)
showed how algebraic methods could be used to explore
the structure of finite automata to model dynamical
systems. Around that time, computer scientists focused

on formal languages, automata theory, and computa-
tional complexity for application of language-theoretic
concepts (e.g., regular expressions and context-free
grammars) in software development including design of
compilers and text processors (Yu 1997, Hopcroft et al.
2001). In the late nineteen seventies and early nineteen
eighties, Ho and co-workers introduced the concept of

finite perturbation in discrete event systems for
modelling and analysis of human-engineered systems
(Ho and Cao 1991). So far, no concrete theoretical
concept and mathematical tools had been available for
analysis and synthesis of discrete event control systems.

The concept of discrete event supervisory (DES)
control was first introduced in the seminal paper of*Email: axr2@psu.edu
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Ramadge and Wonham (1987) and this important
paradigm has been subsequently extended by other
researchers (for example, see citations in Kumar and
Garg (1995) and Cassandras and Lafortune (1999),
and the October 2000 issue of Part B of IEEE
Transactions on Systems, Man, and Cybernetics).
These efforts have led to the evolution of a new
discipline in decision and Control, called Supervisory
Control Theory (SCT), that requires partitioning the
discrete-event behaviour of a physical process, called
the plant, into legal and illegal categories. The legal
behaviour of plant dynamics is modelled by a determi-
nistic finite-state automaton, abbreviated as DFSA in
the sequel. The DFSA model is equivalent to a regular
language that is built upon an alphabet of finitely
many events; the event alphabet is partitioned into
subsets of controllable events (that can be disabled)
and uncontrollable events (that cannot be disabled).
Based on the regular language of an unsupervised
plant, SCT synthesizes a DES controller as another
regular language, having the common alphabet with
the plant language, that guarantees restricted legal
behaviour of the supervised plant based on the desired
specifications. Instead of continuously handling numeri-
cal data, DES controllers are designed to process event
strings to disable certain controllable events in the
physical plant. A number of algorithms for DES control
synthesis have evolved based on the automata theory
and formal languages relying on the disciplines of
Computer Science and Control Science. In general, a
supervised plant DFSA is synthesized as a parallel
composition of the unsupervised plant DFSA and a
supervisor DFSA (Cassandras and Lafortune 1999).
The supervised plant DFSA yields a sublanguage
of the unsupervised plant language, which enables
restricted legal behaviour of the supervised plant
(Ramadge and Wonham 1987, Kumar and Garg 1995,
Cassandras and Lafortune 1999). These concepts have
been extended to several practical applications, includ-
ing hierarchical Command, Control, Communication,
and Intelligence (C3I ) systems (Phoha et al. 2002).
Apparently, there have been no quantitative methods
for evaluating the performance of supervisory control-
lers and establishing thresholds for their performance.
The concept of permissiveness has been used in DES

control literature (Kumar and Garg 1995, Cassandras
and Lafortune 1999) to facilitate qualitative comparison
of DES controllers under the language controllability
condition. Design of maximally permissive DES
controllers has been proposed by several researchers
based on different assumptions. However, maximal
permissiveness does not imply best performance of the
supervised plant from the perspective of achieving
plant operational objectives. For example, in the
travelling salesman problem, a maximally permissive

supervisor may not yield the least expensive way of
visiting the scheduled cities and returning to the starting
point because no quantitative measure of performance
is addressed in this type of supervisor design.

The above argument evinces the need for a signed real
measure of regular languages, which can be used for
quantitative evaluation and comparison of different
supervisors for a physical plant, instead of relying on
permissiveness as the (qualitative) performance index.
Construction of the proposed language measure follows
Myhill–Nerode Theorem (Martin 1997, Hopcroft et al.
2001), which states that a regular language can be
partitioned into finitely many right-invariant equiva-
lence classes. In other words, a state-based partitioning
of the (unsupervised) plant language yields equivalence
classes of finite-length event strings. Each marked state
is characterized by a signed real value that is chosen
based on the designer’s perception of the state’s
impact on the system performance. Conceptually similar
to conditional probability, each event is assigned a cost
based on the state at which it is generated. This
procedure permits a string of events, terminating on a
good (bad) marked state, to have a positive (negative)
measure. A supervisor can be designed in this setting
such that the supervisor attempts to eliminate as many
bad strings as possible and retain as many good strings
as possible. Different supervisors may achieve this goal
in different ways and generate a partially ordered set
of supervised sublanguages. The language measure
then creates a total ordering on the performance of
the supervised sublanguages, which provides a precise
quantitative comparison of the controlled plant
behaviour under different supervisors. This feature is
formally stated as follows.

Given that the relation � induces a partial ordering on a set

of supervised sublanguages fLðS j=GÞ, j ¼ 1, . . . ,Ng of the

plant language LðGÞ under supervisors whose languages

are fLðS jÞ, j ¼ 1, . . . ,Ng, the language measure � induces

a total ordering � on f�ðLðS j=GÞÞg. In other words, the

range of the set function � is totally ordered while its

domain could be partially ordered.

The above problem was first addressed by Wang and
Ray (2004) who proposed a signed measure of regular
languages; an alternative approach was proposed by
Ray and Phoha (2003) who constructed a vector space
of formal languages and defined a metric based on the
total variation measure of the language.

This paper reviews, clarifies and expands the contents
of previous publications (Ray and Phoha 2003, Wang
and Ray 2004) from the perspectives of discrete-event
supervisory control within a unified framework and
also introduces new concepts and ramifications of the
language measure and its parameter identification.
Systematic procedures for computation of the language
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measure are developed in this paper and they are
illustrated with an engineering example. The major
objective here is rigorous formulation and systematic
construction of a real signed measure of regular
languages, based on the fundamental principles of
automata theory and real analysis. The quantitative
tools are readily applicable to analysis and synthesis
of discrete-event supervisory control algorithms.
Specifically, performance indices of supervisors can be
defined in terms of the language measure.
The signed real measure for a DFSA, presented in this

paper, is constructed based on assignment of an event
cost matrix and a characteristic vector. Two techniques
for language measure computation have been recently
reported. While the first technique (Wang and Ray
2004) leads to a system of linear equations whose
(closed form) solution yields the language measure
vector, the second technique (Ray and Phoha 2003) is
a recursive procedure with finite iterations. A sufficient
condition for finiteness of the signed measure has been
established in both cases; and an upper bound is
established for the max norm of the language measure
vector.
In order to induce total ordering on the measure of

different sublanguages of a plant language under
different supervisors, it is implicit that same strings in
different sublanguages must be assigned the same
measure. This is accomplished by a quantitative tool
that requires a systematic procedure to assign a
characteristic vector and an event cost matrix. The
clarifications and extensions presented in this paper
are intended to enhance development of a systematic
analytical tool for synthesizing discrete-event
supervisory control. For example, Ray et al. (2004)
have proposed unconstrained optimal control of regular
languages where a state-based optimal control policy is
obtained by selectively disabling controllable events to
maximize the measure of the supervised plant language.
The paper is organized in eight sections including the

present introductory section and two appendices.
Section 2 briefly describes the language measure and
introduces the notations. Section 3 presents the proce-
dure by which the performance of different supervisors
can be compared based on a common quantitative
tool. It also discusses two methods for computing
language measure. Section 4 addresses issues regarding
physical interpretation of the event cost used in the
language measure. Section 5 presents a recursive
algorithm for identification of the language parameters
(i.e., elements of the event cost matrix). Section 6
illustrates the usage of the language measure for con-
struction of metric spaces of formal languages and
synthesis of optimal discrete-event supervisors. Section 7
presents an application of the language measure on the
discrete-event model of a twin-engine unmanned

aircraft (Ray and Phoha 2003, Ray et al. 2004).
The paper is summarized and concluded in x 8 along
with recommendations for future research. Appendix I
provides pertinent mathematical background of mea-
sure theory as needed in the main body of the paper.
Appendix II establishes a sufficient condition for abso-
lute convergence of the language measure.

2. Language measure concept

This section first introduces the signed real measure of
regular languages, originally reported in (Ray and
Phoha 2003, Wang and Ray 2004). Then, the underlying
concepts of language measure are clarified in the context
of discrete event supervisory (DES) control.

Let Gi � hQ,�, �, qi,Qmi be a trim (i.e., accessible and
co-accessible) finite-state automaton model (Ramadge
and Wonham 1987, Cassandras and Lafortune 1999)
that represents the discrete-event dynamics of a physical
plant, where Q ¼ fqk: k 2 IQg is the set of states and
IQ � f1, 2, . . . , ng is the index set of states; the automa-
ton starts with the initial state qi; the alphabet of
events is � ¼ f�k: k 2 I�g, and I� � f1, 2, . . . , ‘g is the
index set of events; �:Q��! Q is the (possibly
partial) function of state transitions; and Qm �

fqm1
, qm2

, . . . , qmr
g � Q is the set of marked (i.e.,

accepted) states with qmk
¼ qj for some j 2 IQ.

Let �� be the Kleene closure of �, i.e., the set of all
finite-length strings made of the events belonging to �
as well as the empty string � that is viewed as the
identity of the monoid �� under the operation of
string concatenation, i.e., �s ¼ s ¼ s�. The extension
�̂�:Q��� ! Q is defined recursively in the usual sense
(Martin 1997, Hopcroft et al. 2001). For DES control
(Ramadge and Wonham 1987), the event alphabet � is
partitioned into sets, �c and ���c of controllable
and uncontrollable events, respectively, where each
event in �c and no event in ���c can be disabled by
the supervisor.

Definition 1: The language LðGiÞ generated by a
DFSA Gi initialized at the state qi 2 Q is defined as

LðGiÞ ¼ fs 2 �� j �̂�ðqi, sÞ 2 Qg: ð1Þ

Since the state transition function � is allowed to be
a partial function, LðGiÞ � �� following Definition 1;
if � is a total function, then the generated language
LðGiÞ ¼ ��.

Definition 2: Given a DFSA plant model Gi, having
the set of controllable events �c � �, let S and eSS be two
controllable supervisors (i.e., each of S and eSS is repre-
sented by an event disabling mapping LðGiÞ ! 2�c ).
Let the languages of the plant supervised by S and eSS
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be denoted as LðS=GiÞ and LðeSS=GiÞ, respectively. Then, S

is said to be less permissive (or more restrictive) than eSS,
denoted as S � eSS, if the following condition holds.

S � eSS if LðS=GiÞ � LðeSS=GiÞ: ð2Þ

In other words, S may disable a larger set of control-
lable events than eSS following the execution of an event
string s 2 ��.

Definition 3: The language LmðGiÞ marked by a DFSA
Gi, initialized at the state qi 2 Q, is defined as

LmðGiÞ ¼ fs 2 �� j �̂�ðqi, sÞ 2 Qmg: ð3Þ

Definition 4: For every qi, qk 2 Q, let Li,k denote the
set of all strings that, starting from the state qi, termi-
nate at the state qk, i.e.,

Li,k ¼ fs 2 �� j �̂�ðqi, sÞ ¼ qkg: ð4Þ

In order to obtain a quantitative measure of the marked
language, the set Qm of marked states is partitioned into
Qþm and Q�m, i.e., Qm ¼ Qþm [Q

�
m and Qþm \Q

�
m ¼ ;.

The positive set Qþm contains all good marked states
that one would desire to reach, and the negative set
Q�m contains all bad marked states that one would not
want to terminate on, although it may not always be
possible to completely avoid the bad states while
attempting to reach the good states. From this perspec-
tive, each marked state is characterized by an assigned
real value that is chosen based on the designer’s percep-
tion of the state’s impact on the system performance.

Definition 5: The characteristic function �:Q!
[�1, 1] assigns a signed real weight to a state-based sub-
language Li,j, having each of its strings terminating on
the same state qj, and is defined as

8qj 2 Q, �ðqjÞ 2
½�1, 0Þ, qj 2 Q�m
f0g, qj =2Qm

ð0, 1�, qj 2 Qþm:

8<: ð5Þ

The state weighting vector, denoted by X ¼

½�1 �2 . . . �n�
T , is called the X-vector, where

�j ��ðqjÞ. That is, the jth element �j of X-vector is the
weight assigned to the corresponding state qj.
In general, the marked language LmðGiÞ consists of

both good and bad strings, which start from the initial
state qi, respectively lead to Qþm and Q�m. Denoting the
set difference operation by ‘‘–’’, any event string belong-
ing to the language L0ðGiÞ � LðGiÞ � LmðGiÞ leads to
one of the non-marked states belonging to Q�Qm

and L0ðGiÞ does not contain any one of the good or

bad strings. Partitioning Qm into the positive set Qþm
and the negative set Q�m leads to partitioning of the
marked language LmðGiÞ into a positive language
LþmðGiÞ and a negative language L�mðGiÞ. Based on the
equivalence classes defined in the Myhill–Nerode
Theorem (Hopcroft et al. 2001), the regular languages
LðGiÞ and LmðGiÞ can be expressed as

LðGiÞ ¼
[
k2IQ

Li,k ð6Þ

LmðGiÞ ¼ LþmðGiÞ
[

L�mðGiÞ ð7Þ

where the sublanguage Li,k � LðGiÞ is uniquely labelled
by the state qk, k 2 IQ and Li,k \ Li,j ¼ ; 8k 6¼ j;
and LþmðGiÞ � [qk2QþmLi,k and L�mðGiÞ � [qk2Q�mLi,k are
good and bad sublanguages of LmðGiÞ, respectively.
Then, the null sublanguage L0ðGiÞ ¼ [qk =2Qm

Li,k and
LðGiÞ ¼ L0ðGiÞ [ L

þ
mðGiÞ [ L

�
mðGiÞ.

Now a signed real measure is constructed as �i:
2LðGiÞ ! R � ð�1,1Þ on the �-algebra M ¼ 2LðGiÞ.
(Appendix I provides details of measure-theoretic
definitions and results.) With this choice of �-algebra,
every singleton set made of an event string s 2 LðGiÞ

is a measurable set, which allows its quantitative
evaluation based on the above state-based decomposi-
tion of LðGiÞ into null (i.e., L0ðGiÞ), positive (i.e.,
LþmðGiÞ), and negative (i.e., L�mðGiÞ) sublanguages.

Conceptually similar to the conditional probability,
each event is assigned a cost based on the state at
which it is generated.

Definition 6: The event cost of the DFSA Gi is defined
as a (possibly partial) function ~��: ��� Q! ½0, 1� such
that 8qi 2 Q, 8�j 2 �, 8s 2 ��,

~��½�j , qi� ¼ 0 if �ðqi, �jÞ is undefined; ~��½�, qi� ¼ 1;

~��½�j , qi� � ~��ij 2 ½0, 1Þ;
X
j2I�

~��ij < 1;

~��½�js, qi� ¼ ~��½�j, qi� ~��½s, �ðqi, �jÞ�:

ð8Þ

A simple application of the induction principle to
the last part of Definition 6 shows ~��½st, qj� ¼ ~��½s, qj �
~��½t, �̂�ðqj, sÞ�. The condition

P
k2IQ

~��jk < 1 provides a
sufficient condition for the existence of the real
signed measure as discussed in x 3 and Appendix II.
Additional comments on the physical interpretation of
the event cost are provided in x 4.

The n� ‘ event cost matrix is defined as

e&& ¼
~��11 ~��12 . . . ~��1‘
~��21 ~��22 . . . ~��2‘
..
. ..

. . .
. ..

.

~��n1 ~��n2 . . . ~��n‘

2664
3775: ð9Þ
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Definition 7: The state transition cost, �:Q�Q!
½0, 1Þ, of the DFSA Gi is defined as follows.

8i, j 2 IQ,

�ij ¼

P
�2� ~��½�, qi�, if �ðqi, �Þ ¼ qj

0 if f�ðqi, �Þ ¼ qjg ¼ ;:

�
ð10Þ

The n� n state transition cost matrix is defined as

& ¼

�11 �12 . . . �1n
�21 �22 . . . �2n
..
. ..

. . .
. ..

.

�n1 �n2 . . . �nn

2664
3775 ð11Þ

and is referred to as the &-matrix in the sequel.

Definition 8: Given a DFSA Gi � hQ,�, �, qi,Qmi the
cost �i of a sublanguage K � LðGiÞ is defined as the
sum of the event cost ~�� of individual strings belonging
to K .

�iðKÞ ¼
X
s2K

~��½s, qi�: ð12Þ

Definition 9: For a given DFSA Gi, the signed real
measure of every singleton string set fsg 2 Li,j � LðGiÞ

is defined as �iðfsgÞ � ~��ðs, qiÞ�j implying that

8s 2 Li, j, �iðfsgÞ

¼ 0, qj =2Qm

> 0, qj 2 Qþm
< 0, qj 2 Q�m

8<: ð13Þ

Thus an event string terminating on a good (bad)
marked state has a positive (negative) measure and
one terminating on a non-marked state has zero
measure. It follows from Definition 9 that the signed
measure of the sublanguage Li,j � LðGiÞ of all events,
starting at qi and terminating at qj , is

�iðLi, jÞ ¼
X
s2Li, j

~��½s, qi�

0@ 1A� j ð14Þ

Definition 10: The signed real measure of the language
of a DFSA Gi initialized at a state qi 2 Q, is defined as

�i � �
iðLðGiÞÞ ¼

X
j2IQ

�iðLi,jÞ: ð15Þ

The language measure vector, denoted as l ¼

½�1 �2 . . .�n�
T , is called the l-vector.

Remark 1: �iðLmðGiÞÞ ¼ �i 8i 2 IQ because �k ¼ 0
8qk 2 Q�Qm.

It follows from Definition 10 that �iðLi,jÞ ¼ �
iðLi,jÞ�j.

Under the condition of
P

k ~��jk < 1 in Definition 6,
convergence of the signed real language measure
�i has been proved in (Ray and Phoha 2003,

Wang and Ray 2004). The total variation measure j�ij

of �i has also been shown to be finite for every i 2 IQ
(Ray and Phoha 2003).

In the above setting, the role of the language measure
in DES control synthesis is explained below.

A discrete-event non-marking supervisor S restricts the

marked behaviour of an unsupervised (i.e., uncontrolled)

plant Gi such that LmðS=GiÞ � LmðGiÞ. The unsupervised

marked language LmðGiÞ consists of good strings leading

to Qþm and bad strings leading to Q�m. A supervised (i.e.,

controlled) language LmðS=GiÞ based on a given specifica-

tion of the supervisor S may disable some of the bad strings

and keep some of the good strings enabled. Different super-

visors Sj : j 2 f1, 2, . . . , nsg for a DFSA Gi achieve this goal

in different ways and generate a partially ordered set of

supervised sublanguages fLmðSj=GiÞ: j 2 f1, 2, . . . , nsgg. The

real signed measure �i provides a precise quantitative com-

parison of the controlled plant behaviour under

different supervisors because the set f�iðLmðSj=GiÞÞ:

j 2 f1, 2, . . . , nsgg is totally ordered.

In order to realize the above goal, the performance of
different supervisors has to be evaluated based on a
common quantitative tool. Let G � hQG,�, �G, qG1 ,Q

G
mi

denote the unsupervised plant and S � hQS,�, �S,
qS1 ,Q

S
mi denote the supervisor with respective languages

LðGÞ and LðSÞ and the corresponding marked languages
LmðGÞ and LmðSÞ.

Let G � hQ,�, �, q1,Qmi where Q ¼ QG �QS,
q1 ¼ ðq

G
1 , q

S
1 Þ, Qm ¼ fðp, ~ppÞjp 2 QG

m and ~pp 2 QS
mg and

the transition function � is defined by the formula:
8p 2 QG, ~pp 2 QS, and � 2 �

�ðð p, ~ppÞ, �Þ ¼ �Gð p, �Þ, �Sð ~pp, �Þ
� �

: ð16Þ

Then, the marked language LmðGÞ of the automaton G

is LmðGÞ \ LmðSÞ because G is a parallel composition
(Ramadge and Wonham 1987, Cassandras and
Lafortune 1999) of the automata G and S that have
the common alphabet �. Then, it follows that the exten-
sion �̂� satisfies the condition

8s 2 ��, �̂�ðð p, ~ppÞ, sÞ ¼ ð�̂�Gð p, sÞ, �̂�Sð ~pp, sÞÞ ð17Þ

whenever �̂�Gð p, sÞ and �̂�Sð ~pp, sÞ are defined.
The unsupervised plant language LðGÞ is partitioned

by LG
1, j, 1 � j � nG where jQGj ¼ nG. Similarly, the

supervisor language LðSÞ is partitioned by LS
1,k,

1 � k � nS where jQSj ¼ nS. With this construction,

each of the sublanguages LG
1, j is further partitioned by

LG
1, j \ L

S
1,k. Thus, for any qGj 2 QG

m, the set of strings,
which is retained in LmðGÞ \ LmðSÞ, is given by
LG
1, j \ ð[qSk2Q

S
m
LS
1,kÞ. In this setting, the goal is to synthe-

size a supervisor that will retain many strings that termi-
nate on some state in QGþ

m while discarding many strings
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that terminate on QG�
m . It will yield a relatively high

measure and hence good performance.
The above construction shows how the event cost and

characteristic function assigned to the unsupervised
plant can be used as a quantitative tool with which the
performance of different supervisors can be evaluated
and compared. The following procedure indicates how
this can be accomplished explicitly.

Definition 11: Let G, S and G be defined as above. Let
G represent the unsupervised plant and ~��G be the event
cost function and �G be the characteristic function.
Then, for the DFSA G which represents the language
of the supervised plant, the event cost function ~�� is
defined as

~�� �, qGi , q
S
j

� �h i
¼ ~��G �, qGi

� �
8� 2 � and 8i, j s.t. 1 � i � nG, 1 � j � nS: ð18Þ

The �-vector for the DFSA G is defined as

� qGi , q
S
j

� �� �
¼ �GðqGi ÞJ qSj

� �
ð19Þ

where J ð 	 Þ is the indicator function defined as

J ð pÞ ¼
1 p 2 QS

m

0 p =2QS
m.

�
ð20Þ

Let s 2 LððqG
1
, qS

1
Þ, ðqGj , q

S
k
ÞÞ, i.e., the set of all strings starting

at the state ðqG1 , q
S
1 Þ 2 Q � QG �QS and terminating at

ðqGj , q
S
k Þ. If qGj ¼ �̂�

Gðq1, sÞ, it follows from Definition 9
that �ðfsgÞ ¼ ~��G½s, qG1 ��

GðqGj Þ for the unsupervised (i.e.,
uncontrolled) plant. Following equations (18) and (19),
the measure of the supervised (i.e., controlled) plant
becomes

�1ðfsgÞ ¼ ~�� s, qG1 , q
S
1

� �� �
� qGj , q

S
k

� �� �
¼ ~��G s, qG1

� �
�G qGj

� �
J qSk
� �

: ð21Þ

In other words, if no event in the string s is disabled
by the supervisor, then �1ðfsgÞ in the supervised plant
automaton G remains the same as in the unsupervised
plant automaton G; otherwise, �1ðfsgÞ ¼ 0. Thus,
Definition 11 guarantees that the same strings in
different supervised sublanguages of the unsupervised
plant language LðGiÞ are assigned the same measure.
Hence, the performance of different supervisors can be
compared with a common quantitative tool.
Finally to conclude this section, it should be noted

that while the domain (i.e., 2LðGiÞ) of the language
measure �i is partially ordered, its range which is a
subset of R becomes totally ordered. The set LðGiÞ

with the �-algebra, 2LðGiÞ, forms a measurable space.
In principle, any measure � can be defined on this

measurable space to form a measure space (i.e., the
triple hLðGiÞ, 2

LðGiÞ,�ii). The choice of the signed
language measure, as given by Definitions 9 and 10,
has been motivated by the fact that it bears a physical
significance and hence is qualified to serve as a
performance measure for DES controller synthesis.
Moreover, defining the measure in this way also leads
to simple computational procedures as discussed in the
next section and further elaborated in x 4.

3. Language measure computation

Various methods of obtaining regular expressions for
DFSAs are reported in Martin (1997) and Hopcroft
et al. (2001). While computing the measure of a given
DFSA, the same event may have different significance
when emanating from different states. This requires
assigning (possibly) different costs to the same event
defined on different states. Therefore, it is necessary to
obtain a regular expression which explicitly yields the
state-based event sequences. In order to compute the
language measure, it is convenient to transform the pro-
cedures of evaluating regular expression from symbolic
equations to algebraic ones. The following two methods
(Ray and Phoha 2003, Wang and Ray 2004) are
presented, in detail, for language measure computation.

3.1. Method I: closed form solution

This section presents a closed-form method to compute
the language measure via inversion of a square operator.

Definition 12: Let Li � LðGiÞ, i 2 IQ, denote the
regular expression representing the language of a
DFSA Gi ¼ hQ,�, �, qi,Qmi, where qi is the initial state.

Definition 13: Let �kj denote the set of event(s) � 2 �
that is defined on the state qj and leads to the state
qk 2 Q, where j, k 2 IQ, i.e., �ðqj, �Þ ¼ qk, 8� 2 �

k
j � �.

Then, given a DFSA Gi ¼ hQ,�, �, qi,Qmi the procedure
to obtain the system equation by a set of regular expres-
sions Li of the language LðGiÞ, i 2 IQ, is as follows:

8qi 2 Q, Li ¼
X
j2IQ

Ri,j þ �, ð22Þ

where the operator
P

indicates the sum of regular
expressions (equivalently, union of regular languages);
and Ri, j is defined as follows.

If there exists � 2 � such that �ðqi, �Þ ¼ qj 2 Q for
j 2 f1, . . . , ng, then Ri, j ¼ �

j
i Lj, otherwise, Ri, j ¼ ;.

The set of symbolic equations may be written as

Li ¼
X
j

� j
i Lj þ �: ð23Þ
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The above system of symbolic equations can be solved
using a result given below, which is illustrated through
an example.

Lemma 1: Let u, v be two known regular expressions
and r be an unknown regular expression that satisfies
the following algebraic identity:

r ¼ urþ v: ð24Þ

Then, the following relations are true.

(1) r ¼ u�v is a solution to equation (24).
(2) If � =2 u, then r ¼ u�v is the unique solution to

equation (24).

Proof: The proof of Lemma 1, which is also known as
Arden’s relation, is given in Yu (1997) and Ray and
Phoha (2003). œ

Example 1: In this example, shown in figure 1, the
alphabet is � ¼ fa, bg; the set of states is Q ¼ f1, 2, 3g;
the initial state is 1; and the only marked state is 2.
Let the set of linear algebraic equations representing
the transitions at each state of the DFSA be as follows:

L1 ¼ a11L1 þ b21L2 þ �

L2 ¼ a12L1 þ b32L3 þ �

L3 ¼ a13L1 þ b23L2 þ �

9>=>; ð25Þ

where the ‘forcing’ term � is introduced on the right
side of each equation. For example, by application of
Lemma 1, the regular expression for the language
LðG1Þ is given as

L1 ¼ ða
1
1Þ
�b21ða

1
2ða

1
1Þ
�b21 þ b32a

1
3ða

1
1Þ
�b21 þ b32b

2
3Þ
�
þ �:

Instead of obtaining regular expressions, the language
measure can be directly computed by transforming
this set of equations into a system of linear equations
based on the following result.

Theorem 1: Following Definition 10, the language
measure of the symbolic equation (23) is given by

�i ¼
X
j

�ij�j þ �i: ð26Þ

Proof: Following equation (22) and Definition 5

8i 2 IQ, �ið�Þ ¼ �i: ð27Þ

Therefore, each element of the vector X ¼

½�1 �2 . . . �n�
T is the forcing function in equations

(23) and (24). Starting from the state qi, the measure
of the language Li � LðGiÞ (see Definition 12)

�i ¼ �
iðLiÞ ¼ �

i
X
j

� j
i Lj þ �

 !

¼ �i
X
j

� j
i Lj

 !
þ �ið�Þ

¼
X
j

�ið� j
i LjÞ þ �

ið"Þ�i

¼
X
j

�ð� j
i Þ�

jðLjÞ þ �i

¼
X
j

�i j�j þ �i:

The third equality in the above derivation follows from
the fact that � \ � j

i Lj ¼ ;. It is also true that

8j 6¼ k, � j
i Lj

\
�ki Lk ¼ ; ð28Þ

since each string in � j
i Lj starts with an event in � j

i while
each string in �ki Lk starts from an event in �ki and
� j
i \ �

k
i ¼ ; 8j 6¼ k because Gi is a DFSA. This justifies

the fourth equality. The fifth equality follows from
Definition 8 and the fact that �iðLi, jÞ ¼ �

iðLi, jÞ�ðqjÞ;
therefore, by Definitions 7 and 13, �ið� j

i LjÞ ¼ �½qi, qj �
�jðLjÞ ¼ �ij�j. œ

In vector notation, equation (26) in Theorem 1 is
expressed as

l ¼ &lþ X

whose solution is given by

l ¼ ðI�&Þ�1X ð29Þ

provided that the matrix I�& is invertible. The follow-
ing important result guarantees the existence of l.

Theorem 2: Given DFSAs Gi � hQ,�, �, qi,Qmi, with
the state transition cost matrix &, the matrix ðI�&Þ is
an invertible bounded linear operator and l 2 Rn.

Proof: It follows from Definitions 6 and 7 that the
induced max norm k&k1 � maxi

P
j �ij ¼ 1� � where

� 2 ð0, 1Þ. Then ðI�&Þ is invertible and is a bounded
linear operator and kðI�&Þ�1k1 � �

�1 (Naylor andFigure 1. Finite state machine for Example 1.
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Sell 1982). Then, it follows from equation (29) that

l 2 Rn. œ

Corollary 1 (to Theorem 2): The language measure

vector l is bounded as klk1 � �
�1 where � �

ð1� k&k1Þ.

Proof: The proof follows by applying the norm

inequality property and Theorem 2 to equation (29)

and the fact that the max norm kXk1 � 1 by

Definition 5. œ

Alternatively, sufficient conditions for convergence of �
can be obtained based on the properties of nonnegative

matrices that are given in Appendix II. Therefore,

Definitions 6 and 7 provide a sufficient condition for

the language measure � of the DFSA Gi to be finite.

A closed-form algorithm to compute a language mea-

sure based on the above procedure is presented below.

Algorithm 1: Closed-form computation of the

language measure

(1) For a given Gi � hQ,�, �, qi,Qmi, specify the charac-

teristic vector X (see Definition 5) and determine the

event cost matrix e�� (see Definition 6) via experimen-

tation or simulation, as described later in x 5).
(2) Generate the &-matrix (Definition 7).
(3) Compute the language measure vector l 

ðI�&Þ�1X using Gaussian elimination.
(4) Obtain �i, the ith element of l-vector, which is

the measure of the generated language of the

DFSA Gi.

The jth element of the ith row of the ðI�&Þ�1 matrix,

denoted as � ji , is the language measure of the DFSA

with the same state transition function � as Gi and

having the following properties: (i) the initial state is

qi; (ii) qj is the only marked state; and (iii) the �-value
of qj is equal to 1. Thus, �i � �ðLðGiÞÞ is given by

�i ¼
P

j �
j
i �j. Numerical evaluation of the language

measure of the automaton Gi requires Gaussian elimina-

tion of the single variable �i involving the real invertible

matrix ðI�&Þ. Therefore, the computational com-

plexity of the language measure algorithm is polynomial

in the number of states.

3.2. Method II: recursive solution

This section presents a second method to compute the

language measure using a recursive procedure based

on Kleene’s theorem (Martin 1997) which states that

the marked (i.e., accepted) language of a DFSA is

regular. It also yields an algorithm to recursively con-

struct the regular expression of its language instead of

the closed form solution in Method I.

Definition 14: Given qi, qk 2 Q, a non-empty string p
of events (i.e., p 6¼ �) starting from qi and terminating
at qk is called a path. A path p from qi to qk is said to
pass through qj if there exists s 6¼ � and t 6¼ � such that
p ¼ st; �̂�ðqi, sÞ ¼ qj and �̂�ðqj, tÞ ¼ qk.

Definition 15: A path language p j
ik is defined to be the

set of all paths from qi to qk, which do not pass through
any state qr for r > j, and � =2 p j

ik. The path language pik is
defined to be the set of all paths from qi to qk. Thus, the
language Li,k is obtained in terms of the path language
pik as

Li,k ¼
pii
S
f�g, if k ¼ i

pik, if k 6¼ i

�
) �ðLi,kÞ ¼

�ð piiÞ þ 1, if k ¼ i

�ð pikÞ, if k 6¼ i.

�
Every path language p j

ik is a regular language and is a
subset of LðGiÞ. As shown in Ray and Phoha (2003),
following recursive relation holds for 0 � j � n� 1,
where kQk ¼ n.

Theorem 3: Given a DFSA Gi � hQ,�, �, qi,Qmi, the
following recursive relation holds for 1 � j � n� 1

p0lk ¼ f� 2 �: �ðql�Þ ¼ qkg

p jþ1
lk ¼ p j

lk

[
pjl, jþ1 p j

jþ1, jþ1

� ��
p j
jþ1,k:

9=; ð30Þ

Proof: Since the states are numbered form 1 to n in
increasing order, p0lk ¼ f� 2 �: �ðql , �Þ ¼ qkg follows
directly form the state transition map �: Q��! Q
and Definition 15.

Given p j
lk � p jþ1

lk , let us consider the set p jþ1
lk � p j

lk

in which each string passes through qjþ1 in the path
from ql to qk and no string must pass through qm for
m > ð j þ 1Þ. Then, it follows that

p jþ1
lk � p j

lk ¼ p j
l, jþ1p

jþ1
jþ1,k

where p jþ1
jþ1,k can be expanded as

p jþ1
jþ1,k ¼ p j

jþ1, jþ1p
jþ1
jþ1,k

� �[
pjjþ1,k

that has a unique solution following Theorem 1 because
� =2 p j

jþ1, jþ1 based on Definition 15. Therefore,

p jþ1
lk ¼ p j

lk

[
pjl, jþ1 p j

jþ1, jþ1

� ��
pjjþ1,k: œ

Based on the three lemmas proved below, the above
relations can be transformed into an algebraic equation
conceptually similar to Theorem 1 in Method I. Along
with the procedure to compute the language measure
it is established that, 8i 2 IQ,

Pn
j¼1 �ij < 1 is a sufficient

condition for finiteness of �.
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Lemma 2: �ðð p0kkÞ
�
ð[j 6¼kp

0
kjÞÞ 2 ½0, 1Þ:

Proof: Following Definitions 6 and 8, �ð p0kkÞ 2 ½0, 1Þ.
Therefore, by convergence of geometric series,

� p0kk
� �� [

j 6¼k

p0kj

 ! !
¼

P
j 6¼k � p0kj

� �
1� � p0kk

� � 2 ½0, 1Þ
because

P
j �ð p

0
kjÞ )

P
j 6¼k �ð p

0
kjÞ � �ð p

0
kkÞ. œ

Lemma 3: �ð p j
jþ1, jþ1Þ 2 ½0, 1Þ.

Proof: The path p j
jþ1, jþ1 may contain at most j loops,

one around each of the states q1, q2, . . . , qj. If the path
p j
jþ1, jþ1 does not contain any loop, then �ð p j

jþ1, jþ1Þ 2

½0, 1Þ because 8s 2 p j
jþ1, jþ1, �ðsÞ < 1 and each of s origi-

nates at state j þ 1.
Next let us suppose that there is a loop around q‘

and that does not contain any other loop; this loop
must be followed by one or more events �k generated
at q‘ and leading to some other states qm where m 2
f1, . . . , j þ 1g and m 6¼ ‘. By Lemma 2, �ð p j

jþ1, jþ1Þ 2

½0, 1Þ. Proof follows by starting from the innermost
loop and ending with all loops at qj œ

Lemma 4:

�
�
p j
jþ1, jþ1

��� �
¼

1

1� �
�
p j
jþ1, jþ1

� 2 ½1,1Þ: ð31Þ

Proof: Since �ð p j
jþ1, jþ1Þ 2 ½0, 1Þ from Lemma 3.3, it

follows that

�
�
p j
jþ1, jþ1

��� �
¼

1

1� �
�
p j
jþ1, jþ1

� 2 ½1,1Þ: œ

Finally, the main result of this section is stated as the
following theorem.

Theorem 4: Given a DFSA Gi � hQ,�, �, qi,Qmi the
following recursive result holds for 0 � j � n� 1, where
kQk ¼ n:

�
�
p jþ1
lk

�
¼ � p j

lk

� �
þ
�
�
pjl, jþ1

�
�
�
pjjþ1, k

�
1� �

�
p j
jþ1, jþ1

� : ð32Þ

Proof:

�
�
p jþ1
lk

�
¼ � p j

lk

[
p j
l, jþ1

�
p j
jþ1, jþ1

��
p j
jþ1,k

� �
¼ �

�
p j
lk

�
þ � p j

l, jþ1

�
p j
jþ1, jþ1

��
p j
jþ1,k

� �
¼ �

�
p j
lk

�
þ �

�
p j
l, jþ1

�
�
�
p j
jþ1, jþ1

��� �
�
�
p j
jþ1,k

�
¼ �

�
p j
lk

�
þ
�
�
p j
l, jþ1

�
�
�
p j
jþ1,k

�
1� �

�
p j
jþ1, jþ1

� :

The second step in the above derivation follows from
fact that p j

lk \ p
j
l, jþ1ð p

j
jþ1, jþ1Þ

�p j
jþ1,k ¼ ;. The third step

follows from Definition 8 and the last step is a
consequence of Lemma 4. œ

Based on the above result, a recursive algorithm to com-
pute a language measure is presented below.

Algorithm 2: Recursive computation of the language
measure

(1) For a given Gi � hQ,�, �, qi,Qmi, specify the charac-
teristic vector X (see Definition 5) and determine the
event cost matrix e&& (see Definition 6) via experimen-
tation or simulation, as described in x 5).

(2) Compute the &-matrix (Definition 7).
(3) �ð p0lkÞ ��lk for 1 � l, k � n
(4) for j ¼ 0 to n� 1

for l ¼ 1 to n
for k ¼ 1 to n

�ð p jþ1
lk Þ ¼ �ð p

j
lkÞþ

�ð pjl, jþ1Þ�ð p
j
jþ1, kÞ

1� �ð p j
jþ1,jþ1Þ

end
end
end

(5) Calculate �ðLi,kÞ from �ð pikÞ using Definition 15.
(6) �i �

P
qj2Qm

�ðLi,JÞ�j is a measure of the language
Li of the DFSA Gi.

Since there are only three for loops, the computational
complexity of the above algorithm is polynomial in the
number of DFSA states, same as that of Algorithm 1
in Method I.

4. Event cost: a probabilistic interpretation

The signed real measure (see Definition 10) of a regular
language is based on the assignment of the characteristic
vector X (see Definition 5) and the event cost matrix ~&&
(Definition 6). The characteristic vector is chosen by the
designer based on his/her perception of the individual
state’s impact on the system performance. On the
other hand, the event cost is an intrinsic property of
the plant. The event cost ~��jk is conceptually similar to
the state-based conditional probability of Markov
Chains, except for the fact that it is not allowed to
satisfy the equality condition

P
k ~��jk ¼ 1. (Note thatP

k ~��jk < 1 is a requirement for convergence of the
language measure.) The rationale for this strict
inequality is explained below.

Since the plant model is an inexact representation of
the physical plant, there exist unmodelled dynamics
to account for. This can manifest itself either as
unmodelled events that may occur at each state or as
unaccounted states in the model. Let �u

j denote the set
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of all unmodelled events at state qj of the DFSA
Gi � hQ,�, �, qi,Qmi. Creating a new unmarked absorb-
ing state qnþ1, called the dump state (Ramadge and
Wonham 1987), and extending the transition function
� to �ext: ðQ [ fqnþ1gÞ � ð� [j �u

j Þ ! ðQ [ fqnþ1gÞ, it
follows that

�extðqj , �Þ ¼

�ðqj, �Þ, if qj 2 Q and � 2 �
qnþ1, if qj 2 Q and � 2 �u

j

qnþ1, if j ¼ nþ 1 and � 2 �
S

�u
j .

8<:
ð33Þ

Therefore the residue �j ¼ 1�
P

k ~��jk denotes the
probability of the set of unmodelled events �u

j

conditioned on the state j. The & matrix can be similarly
augmented to obtain a stochastic matrix&aug as follows:

&aug ¼

�11 �12 . . . �1n �1
�21 �22 . . . �2n �2
..
. ..

. . .
. ..

. ..
.

�n1 �n2 . . . �nn �n
0 0 . . . 0 1

266664
377775: ð34Þ

Since the dump state qnþ1 is not marked, its character-
istic value �nþ1 � �ðqnþ1Þ ¼ 0. The characteristic vector
then augments to

Xaug ¼ ½X
T 0�T

and, with these extensions, the language measure vector
laug � ½�1 �2 	 	 	 �n �nþ1�

T
¼ ½lT �nþ1�

T of the aug-
mented DFSA Gaug � hQ [ fqnþ1g,� [j �u

j , �ext, qi,Qmi

can be expressed as

laug �
l

�nþ1

� 	
¼

&lþ �nþ1 �1 	 	 	 �n½ �
T

�nþ1

� 	
þ

X

0

� 	
:

ð35Þ

Since �ðqnþ1Þ ¼ 0 and all transitions from the absorbing
state qnþ1 lead to itself, i.e., �nþ1 ¼ �ðLmðGnþ1ÞÞ ¼ 0,
equation (35) reduces to that for the original plant Gi.
Thus, the event cost can now be interpreted as
conditional probability, where the residue �j ¼
1�

P
k ~��jk > 0 accounts for the probability of all

unmodelled events emanating from the state qj. With
this interpretation of event cost, ~��½s, qi� (see Definition
6) denotes the probability of occurrence of the event
string s in the plant model Gi starting at state qi and
terminating at state �̂�ðs, qiÞ. Hence, �iðLi, jÞ (see
Definition 8), which is a non-negative real number, is
directly related to the sum of probabilities that state qi
would be reached via alternative paths as the plant
operates. (Note that �iðLi, jÞ > 1 is possible if Li,j

contains multiple strings.) The language measure
�i � �

iðLðGiÞÞ ¼
P

j2IQ
�iðLi,jÞ ¼

P
j2IQ

�iðLi, jÞ�j is

then directly related (but not necessarily equal) to the
expected value of the characteristic function.

The choice of the characteristic function (see
Definition 5) is based on the importance assigned to
the individual marked states of the DFSA. Therefore,
in the setting of the language measure, a supervisor’s
performance is superior if the supervised plant is more
likely to terminate at a good marked state and/or less
likely to terminate at a bad marked state.

5. Estimation of language measure parameters

This section presents a recursive algorithm for identifica-

tion of the language measure parameters (Wang et al.

2005) (i.e., elements of the event cost matrix e&&) (see
Definition 6) which, in turn, allows computation of the
state transition cost matrix & (see Definition 7) and
the language measure l-vector (see Definition 10). It is
assumed that the underlying physical process evolves
at two different time scales. In the fast-time scale, i.e.,
over a short time period, the system is assumed to be
an ergodic, discrete Markov process. In the slowly-
varying time scale, i.e., over a long period, the system
(possibly) behaves as a non-stationary stochastic pro-
cess. For such a slowly-varying non-stationary process,
it might be necessary to redesign the supervisory control
policy in real time. In that case, the e&&-matrix parameters
should be updated at selected slow-time epochs.

5.1. A recursive parameter estimation scheme

Let pij be the transition probability of the event �j at the
state qi, i.e.,

pij ¼
P½�jjqi�, if 9q 2 Q, s:t: q ¼ �ðqi, �jÞ
0, otherwise

�
ð36Þ

and its estimate be denoted by the parameter p̂pij that is
to be identified from the ensemble of simulation and/
or experimental data.

Let a strictly increasing sequence of time epochs of
consecutive event occurrence be denoted as

T � ftk: k 2 N0g, ð37Þ

where N0 is the set of non-negative integers. Let the indi-
cator  :N0 � IQ � I� ! f0, 1g represent the incident of
occurrence of an event. For example, if the DFSA was
in state qi at time epoch tk�1, then

 ijðkÞ ¼
1, if �j occurs at the time epoch tk 2 T
0, otherwise.

�
ð38Þ
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Consequently, the number of occurrences of any event in
the alphabet � is represented by �:N0 � IQ ! f0, 1g.
For example, if the DFSA was in state qi at the time
epoch tk�1, then

)iðkÞ ¼
X
j2I�

 ijðkÞ: ð39Þ

Let n: N0 � IQ � I� ! N0 represent the cumulative
number of occurrences of an event at a state up to a
given time epoch. That is, nijðkÞ denotes the number of
occurrences of the event �j at the state qi up to the
time epoch tk 2 T . Similarly, let N: N0 � IQ ! N0

represent the cumulative number of occurrences of any
event in the alphabet � at a state up to a given time
epoch. Consequently,

NiðkÞ ¼
X
j2I�

nijðkÞ: ð40Þ

A frequency estimator, p̂pijðkÞ, for probability pijðkÞ of the
event �j occurring at the state qi at the time epoch tk, is
obtained as

p̂pijðkÞ ¼
nijðkÞ

NiðkÞ

lim
k!1

p̂pijðkÞ ¼ pij :

9>=>; ð41Þ

Convergence of the above limit is justified because the
occurrence of an event at a given state of a stationary
Markov chain can be treated as an independent and
identically distributed random variable.
A recursive algorithm of learning pij is formulated as a

stochastic approximation scheme, starting at the time
epoch t0 with the initial conditions: p̂pijð0Þ ¼ 0 and
nijð0Þ ¼ 0 for all i 2 IQ, j 2 I�; and )ið0Þ ¼ 0 for all
i 2 IQ. Starting at k ¼ 0, the recursive algorithm runs
for ftk: k 
 1g. For example, upon occurrence of an
event �j at a state qi, the algorithm is recursively
incremented as

nijðkÞ ¼ nijðk� 1Þ þ  ijðkÞ

NiðkÞ ¼ Niðk� 1Þ þ�iðkÞ:

)
ð42Þ

Next it is demonstrated how the estimates of the lan-
guage parameters (i.e., the elements of event cost
matrix e��) are determined from the probability esti-
mates. As stated earlier in x 4 the set of unmodelled
events at state qi, denoted by �u

i 8i 2 IQ, accounts for
the row-sum inequality:

P
j ~��ij < (see Definition 6).

Then, P½�u
i � ¼ �i 2 ð0, 1� and

P
i ~��ij ¼ 1� �i. An esti-

mate of the ði, jÞth element of the event cost matrixe&&-matrix, denoted by ~̂��~��ij , is approximated as

~̂��~��ijðkÞ ¼ p̂pijðkÞð1� �iÞ 8j 2 I�: ð43Þ

Additional experiments on a more detailed automaton
model would be necessary to identify the parameters
�i 8i 2 IQ. If �i � 1, the problem of conducting
additional experimentation can be circumvented by the
following approximation.

A single parameter � � �i 8i 2 IQ, i 2 IQ, such that
0 < � � 1, could be selected for convenience of imple-
mentation. From the numerical perspective, this option
is meaningful because it sets an upper bound on the
language measure based on the fact that the max
norm k�k1 � �

�1. Note that each row sum in thee&&-matrix being strictly less than 1, i.e.,
P

j ~��ij < 1, is
a sufficient condition for finiteness of the language
measure (see Appendix II).

Theoretically, ~��ij is the asymptotic value of the
estimated probabilities ~̂��~��ijðkÞ as if the event �j occurs
infinitely many times at the state qi. However, while
dealing with finite amount of data, the objective is to
obtain a good estimate p̂pij of pij from independent
Bernoulli trials of generating events. Critical issues in
this situation are: (i) how much data are needed; and
(ii) when to stop if adequate data are available. The
next section 5-B addresses these issues.

5.2. Stopping rules for recursive learning

A stopping rule is necessary to find a lower bound on the
number of experiments to be conducted for identifica-
tion of the e&&-matrix parameters. This section presents
two stopping rules that are discussed below.

The first stopping rule is based on an inference
approximation having a specified absolute error bound
" with a probability 	. The objective is to achieve a
trade-off between the number of experimental observa-
tions and the estimation accuracy.

A bound on the required number of samples is
estimated using the Gaussian structure of the binomial
distribution that is an approximation of the sum of a
large number of independent and identically distributed
(i.i.d.) Bernoulli trials of ~̂��~��ijðtÞ. The central limit theorem
yields ~̂��~��ij  Nð ~��ij , ~��ijð1� ~��ijÞ=NÞ, where N indicates
normal (or Gaussian) distribution with E½ ~̂��~��ij� � ~��ij and
Var½ ~̂��~��ij� � �

2 � ~��ijð1� ~��ijÞ=N, provided that the number
of samples N is sufficiently large. Let � ¼ ~̂��~��ij � ~��ij , then
�=�  Nð0, 1Þ. Given 0 < "� 1 and 0 < 	� 1, the
problem is to find a bound Nb on the number N of
experiments such that Pfj�j 
 "g � 	. Equivalently,

P
j�j

�


"

�

� 

� 	 ð44Þ

that yields a bound Nb on N as

Nb 


�1ð	Þ

"

� 	2

~��ijð1� ~��ijÞ, ð45Þ
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where 
ðxÞ � 1�
ffiffiffiffiffiffiffiffi
2=�
p Ð x

0e
�ðt2=2Þ dt. Since the parameter

~��ij is unknown, one may use the fact that ~��ijð1� ~��ijÞ �
0:25 for every ~��ij 2 ½0, 1� to (conservatively) obtain a
bound on N only in terms of the specified parameters
" and 	 as

Nb 


�1ð	Þ

2"

� 	2

: ð46Þ

The above estimate of the bound on the required
number of samples is less conservative than that
obtained from the Chernoff bound and is significantly
less conservative than that obtained from Chebyshev

bound which does not require the assumption of any
specific distribution of � except for finiteness of the
rth (r ¼ 2) moment.
The second stopping rule, which is an alternative to

the first stopping rule, is based on the properties of
irreducible stochastic matrices. Following equation (41)
and the state transition function � of the DFSA, the
state transition matrix is constructed at the kth iteration
as PðkÞ that is an n� n irreducible stochastic matrix
under stationary conditions. Similarly, the state prob-
ability vector pðkÞ � ½p1ðkÞ p2ðkÞ 	 	 	 pnðkÞ� is obtained
by following equation (41)

piðkÞ ¼
NiðkÞP

j2IQ
NjðkÞ

: ð47Þ

The stopping rule makes use of the Perron–Frobenius
Theorem to establish a relation between the vector pðkÞ
and the irreducible stochastic matrix PðkÞ.

Theorem 5: Perron–Frobenius Theorem (Senata 1973,
Plemmons and Berman 1979) Let PðkÞ be an n� n
irreducible matrix, then there exits an eigenvalue r such

that

(1) r 2 R and r > 0.
(2) r can be associated strictly positive left and right

eigenvectors.
(3) r 
 	 8 eigenvalue 	 6¼ r.
(4) The eigenvectors associated with r are unique to

constant multiples.
(5) If 0 � B � PðkÞ and � is an eigenvalue of B, then
j�j � jrj. Moreover, j�j ¼ r implies B ¼ PðkÞ.

(6) r is a simple root of the characteristic equation of

PðkÞ.

Corollary 1: Corollary to Perron–Frobenius Theorem

min
i

Xn
j¼1

PijðkÞ � r � max
i

Xn
j¼1

PijðkÞ

with equality on either side implying equality throughout.

Since PðkÞ is a stochastic matrix, i.e.,
Pn

j¼1 PijðkÞ ¼ 1,
and PðkÞ is irreducible, there is a unique eigenvalue
r ¼ 1 and the corresponding left eigenvector pðkÞ (nor-
malized to unity in the sense of absolute sum) represent-
ing the state probability vector, provided that the matrix
parameters have converged after sufficiently large
number of iterations. That is,

kpðkÞ I� PðkÞð Þk1 �
1

k
! 0 as k!1:

Equivalently,

k pðkÞ � pðkþ 1Þð Þk1 �
1

k
! 0 as k!1: ð48Þ

Taking the expected value of kpðkÞk1 to be 1=n, a
threshold of �=n is specified, where n is the number of
states and 0 < �� 1 is a constant. A lower bound on
the required number of samples is determined from
equation (48) as

Nstop � Integer
n

�

� 	
ð49Þ

based on the number of states, n, and the specified
tolerance �.

6. Usage of the language measure

The two methods of language measure computation,
presented in x 3, have the same computational com-
plexity, Oðn3Þ, where n is the number of states of the
DFSA. However, each of these two methods offer
distinct relative advantages in specific contexts. For
example, while the closed form solution in x 3.1 is
more amenable for analysis and synthesis of decision
and control algorithms, the recursive solution in x 3.2
might prove very useful for construction of executable
codes in real time applications. The following two sub-
sections present usage of the language measure for con-
struction of metric spaces of formal languages and
synthesis of optimal discrete-event supervisors.

6.1. Vector space of formal languages

The language measure can be used to construct a
vector space of sublanguages for a given DFSA Gi �

hQ,�, �, qi,Qmi. The total variation measure j�j
(Rudin 1987) (see Appendix I) induces a metric on this
space, which quantifies the distance function between
any two sublanguages of LðGiÞ.

Proposition 1: Let LðGiÞ be the language of a DFSA
Gi ¼ hQ,�, �, qi,Qmi. Let the binary operation of
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exclusive-OR �: 2LðGiÞ � 2LðGiÞ ! 2LðGiÞ be defined as

ðK1 � K2Þ ¼ K1

[
K2

� �
� K1

\
K2

� �
ð50Þ

8K1,K2 � LðGiÞ. Then ð2
LðGiÞ,�Þ is a vector space over

Galois field GF ð2Þ.

Proof: It follows from the properties of exclusive-OR
that the algebra ð2LðGiÞ,�Þ is an Abelian group where ;
is the zero element of the group and the unique inverse
of every element K � 2LðGiÞ is K itself because K1�

K2 ¼ ; if and only if K1 ¼ K2. The associative and
distributive properties of the vector space follows by
defining the scalar multiplication of vectors as:
0� K ¼ ; and 1� K ¼ K . œ

The collection of singleton languages made from each
element of LðGiÞ forms a basis set of vector space
ð2LðGiÞ,�Þ over GF ð2Þ. It is shown below, how total var-
iation (Rudin 1987) of the signed measure � can be used
to define a metric on above vector space.

Proposition 2: Total variation measure j�j on 2LðGiÞ is
given by j�jðLÞ ¼

P
s2L j�ðfsgÞj 8L � LðGiÞ.

Proof: The proof follows from the fact that �kj�ðLkÞj

attains its supremum for the finest partition of L which
consists of the individual strings in L as elements of the
partition. œ

Corollary 2 (to Proposition 2): Let LðGiÞ be the lan-
guage of a DFSA Gi � hQ,�, �, qi,Qmi. For any
K 2 2LðGiÞ, j�jðKÞ � ��1 where � ¼ 1� k&k1 and & is
the state transition cost matrix of the DFSA.

Proof: The proof follows from Proposition 2 and
Corollary 1. œ

Definition 16: Let LðGiÞ be the language of a DFSA
Gi � hQ,�, �, qi,Qmi. The distance function d : 2LðGiÞ�

2LðGiÞ ! ½0,1Þ is defined in terms of the total variation
measure as 8K1,K2 � LðGiÞ

dðK1,K2Þ ¼ j�j K1

[
K2

� �
� K1

\
K2

� �� �
ð51Þ

The above distance function dð 	, 	 Þ quantifies the dif-
ference between two supervisors relative to the super-
vised performance of the DFSA plant.

Proposition 3: The distance function defined above is a
pseudo-metric on the space 2LðGiÞ

Proof: Since the total variation of a signed real
measure is bounded (Rudin 1987), 8K1,K2 � LðGiÞ,
dðK1,K2Þ ¼ j�jðK1 � K2Þ 2 ½0,1Þ; also by Definition
16, dðK1,K2Þ ¼ dðK2,K1Þ. The remaining property of
the triangular inequality follows from the inequality
j�jðK1 � K2Þ � j�jðK1Þ þ j�jðK2Þ which is based on the

fact that ðK1 � K2Þ � ðK1 [ K2Þ and j�jðK1Þ � j�jðK2Þ

8K1 � K2. œ

The pseudo-metric j�j: 2LðGiÞ ! ½0,1Þ can be converted

to a metric of the space ð2LðGiÞ,�Þ by clustering all lan-

guages that have zero total variation measure as the

null equivalence class N � fK 2 2LðGiÞ: j�jðKÞ ¼ 0g.

This procedure is conceptually similar to what is done

for defining norms in the Lp spaces. In that case, N
contains all sublanguages of LðGiÞ, which terminate on

non-marked states starting from the initial state, i.e.,

N ¼ f; [ ð[qj =2Qm
Li,jÞ. In the sequel, j�jð 	 Þ is referred

to as a metric of the space 2LðGiÞ. Thus, the metric

j�jð 	 Þ can be generated from dð 	, 	Þ as:

j�jðKÞ ¼ dðK , JÞ 8K 2 2LðGiÞ 8J 2 N . Unlike the norms

on vector spaces defined over infinite fields, the metric

j�jð 	 Þ for the vector space ð2LðGiÞ,�Þ over GFð2Þ is not
a functional. This interpretation of language as a

vector and associating a metric to quantify distance

between languages, may be useful for analysis and

synthesis of discrete-event supervisory (DES) control

systems under different settings.

6.2. Optimal control of regular languages

The (signed) language measure � could serve as the per-

formance index for synthesis of an optimal control

policy that maximizes the performance of a supervised
sublanguage. The salient concept is briefly presented

below.
Let S � fS0,S1, . . . ,SNg be a set of supervisory con-

trol policies for the unsupervised plant automaton G

where S 0 is the null controller (i.e., no event is disabled)

implying that LðS 0=GÞ ¼ LðGÞ. Therefore, the controller

cost matrix &ðS 0Þ ¼ &0 that is the &-matrix of the

unsupervised plant automaton G. For a supervisor
Sk, k 2 f1, 2, . . . ,Ng, the control policy is required to

selectively disable certain controllable events so that

the following (elementwise) inequality holds.

&k � &ðSkÞ � &0 and LðSk=GÞ � LðGÞ, 8Sk 2 S:

The task is to synthesize an optimal cost matrix
&� � &0 that maximizes the performance vector

l� � ½I�&���1X, i.e., l� 
 lk � ½I�&k�
�1X 8 &k �&0

where the inequalities are implied elementwise. While

the details of the underlying theory are available in

recent literature (Ray et al. 2004), a synthesis procedure

for optimal control of regular languages is succinctly

presented below.
Let the DFSA model G of the unsupervised plant

have the state transition cost matrix: &0 � & (see

Definition 7) and the characteristic vector X (see

Definition 5). Then, the performance vector at the
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iteration k ¼ 0 is given as

l0 ¼ ½�0
1 �0

2 . . . �0
n�
T
¼ ðI �&0Þ

�1X

where the jth element �0
j of the vector �

0 is the perform-

ance of the unsupervised plant language, with state qj as
the initial state. Then, �0

j < 0 implies that, if the state qj
is reached, then the plant will yield bad performance
thereafter. Intuitively, the control system should attempt
to prevent the automaton from reaching qj by disabling

all controllable events that lead to this state. Therefore,
the optimal control algorithm starts with disabling all

controllable events that lead to every state qj for which
�0
j < 0. This is equivalent to reducing all elements

of the corresponding columns of the &0-matrix by dis-
abling those controllable events. In the next iteration,

i.e., k ¼ 1, the updated cost matrix &1 is obtained as:
&1 ¼ &0 � D0 where D0


 0 (the inequality being
implied elementwise) is composed of event costs corre-

sponding to all controllable events that have been
disabled.
It has been shown in Ray et al. (2004) that lk�1 �

lk � ½I �&k�
�1 X elementwise for all k 
 1. Although

all controllable events leading to every state correspond-

ing to a negative element of l1 are disabled, some of the
controllable events that were disabled at k ¼ 0 may now
lead to states corresponding to positive elements of l1.

Performance could be further enhanced by re-enabling
these controllable events. For k 
 1, &kþ1 ¼ &k þ Dk

where Dk

 0 is composed of the state transition costs

of all re-enabled controllable events at k. It is also

shown in Ray et al. (2004) that the number of iterations
to reach optimality does not exceed the number, n, of

DFSA states. Therefore, the computational complexity
of the optimal control algorithm is polynomial n.
In the optimal control algorithm in Ray et al. (2004),

if l0 
 0, i.e., there is no state qj such that l0
j < 0, then

the plant performance cannot be improved by event dis-
abling and the null controller S 0 (i.e., no disabled event)

is the optimal controller for the given plant. Therefore,
the cases are considered where �0

j for some state qj.

Starting with k ¼ 0 and &0 � &plant, the control
policy is constructed by the following two-step
procedure:

Step 1: For every state qj for which �0
j < 0, disable

controllable events leading to qj. Now, &1 ¼ &0 � D0,

where D0

 0 is composed of event costs corresponding

to all controllable events, leading to qj for which l0
j ,

which have been disabled at k ¼ 0.

Step 2: For k 
 1, if �k
j 
 0, re-enable all controllable

events leading to qj , which were disabled in Step 1. The

cost matrix is updated as: &kþ1 ¼ &k þ Dk for k 
 1,
where Dk


 0 is composed of event costs corresponding

to all currently re-enabled controllable events. The itera-
tion is terminated if no controllable event leading to qj
remains disabled for which �k

j > 0. At this stage, the
optimal performance l� � ½I �&���1X.

7. An application example

Ray and Phoha (2003) and Ray et al. (2004) have
adopted the closed form method of language measure

(see x 3.1) as a performance index for optimal super-
visory control of a twin-engine unmanned aircraft that
is used for surveillance and data collection. The

language measure was computed and verified based on
both closed form and recursive techniques given in x 3;
the results were identical as expected. Engine health

and operating conditions, which are monitored in real
time based on observed data, are classified into three
mutually exclusive and exhaustive categories:

. good;

. unhealthy (but operable);

. inoperable.

In the event of any observed abnormality, the supervisor
may decide to continue or abort the mission. The finite
state automaton model of the plant in figure 2 has 13

states (excluding the dump state), of which three are
marked states, and nine events, of which four are
controllable and the remaining five are uncontrollable.

All events are assumed to be observable. The states
and events of the plant model are listed in table 1 and
table 2, respectively. The state transition function �
and the state-based event cost ~��ij (see Definition 6) are
entered simultaneously in table 3. The values of ~��ij
were selected by extensive experiments on engine simula-
tion models and were also based on experience of gas
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Figure 2. Unsupervised plant, i.e., no disabling of

controllable events.
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turbine engine operation and maintenance. The dump

state and any transitions to the dumped state are not

shown in table 3. The elements of the characteristic

vector (see Definition 5) were chosen as signed real

weights based on the perception of each marked state’s

role on the engine performance.
The characteristic (�) values of the 13 states

are assigned as: X ¼ ½0 0 0 0 0 0 0 0 0 0 �0:05 þ0:25
�1:0�T . These parameters are selected by the designer

based on his/her perception of each marked state’s

role in the system performance. As the states 1 to 10

in in table 1 are not marked, the first 10 elements of

the characteristic vector X are zeros. The implication

is that event strings terminating at states 1 to 10

have no bearing on the system performance and

hence have zero measure. The state 12 is a good

marked state having a positive � value and the bad

marked states 11 and 13 have negative � values.

Therefore, event strings terminating at state 12 have

positive measure and those terminating at states 11

and 13 have negative measure.
Four supervisory controllers were designed indepen-

dently using a graphical interactive package (Wang

et al. 2003) based on the following specifications.

(1) Specification #1: At least one of the two engines

must be in good condition for mission continuation.
(2) Specification #2: None of the two engines must be in

inoperable condition for mission continuation.
(3) Specification #3: Both engines must be in good con-

dition for mission continuation.
(4) Optimal Control: The control policy is optimized

following the two-step procedure in x 6.2.

The supervised plant automata under specifications

#1, #2, #3 and optimal control are displayed in

figures 3, 4, 5 and 6, respectively, where dashed lines

indicate disabled controllable events. Notice that none

of the controllable events are disabled in the unsuper-

vised plant (see figure 2) and the four supervisors

disable different sets of controllable events, as seen in

figures 3–6.

Table 1. Plant automation states.

State Description

1 Safe in base

2 Mission executing — two good engines

3 One engine unhealthy during mission execution

4 Mission executing — one good and one unhealthy engine

5 Both engines unhealthy during mission execution

6 One engine good and one engine inoperable

7 Mission execution with two unhealthy engines

8 Mission execution with only one good engine

9 One engine unhealthy and one engine inoperable

10 Mission execution with only one unhealthy engine

11 Mission aborted/not completed (Bad Marked State)

12 Mission successful (Good Marked State)

13 Aircraft destroyed (Bad Marked State)

Table 2. Plant event alphabet.

Event

Event

description

Controllable

event

s Start and take-off
p

b A good engine becoming unhealthy

t An unhealthy engine becoming inoperable

v A good engine becoming inoperable

k Keep engine(s) running
p

a Mission abortion
p

f Mission completion

d Destroyed aircraft

l Landing
p

Table 3. State transition and event cost matrix.

s b t v k a f d l

1 0.50(2) 0.02(1)

2 0.05(3) 0.01(6) 0.80(12) 0.10(13)

3 0.45(4) 0.45(11)

4 0.12(5) 0.16(6) 0.10(9) 0.50(12) 0.12(13)

5 0.45(7) 0.45(11)

6 0.45(8) 0.45(11)

7 0.25(9) 0.50(12) 0.20(13)

8 0.20(9) 0.01(13) 0.3(12) 0.4(13)

9 0.45(10) 0.45(11)

10 0.35(13) 0.20(12) 0.40(13)

11 0.95(1)

12 0.95(1)

13

Signed real measure of regular languages 963



The performance measure �1 (i.e., with the initial
state 1) of the unsupervised (i.e., no disabling of control
events) plant is 0.0823 and for three supervised plants
under specifications #1, #2, #3 and the optimally

supervised plant are evaluated to be: 0.0807, 0.0822,
0.0840 and 0.0850, respectively. Therefore, the perfor-
mance of the supervised plant under specifications #1,
#2 and #3 is inferior, similar, and superior, respectively,
to that of the unsupervised plant. As expected, the opti-
mal supervisor has better performance than that of
Supervisor #3. Notice that Supervisor #3 does disable
the controllable event k from the state 3 to state 4 and
the optimal supervisor does not. That is, the optimal
supervisor allows continuing operation of an unhealthy
engine while the remaining engine is in good condition.

8. Summary, conclusions, and future research

This paper reviews the concept, formulation and valida-
tion of a signed real measure for regular languages and
their sublanguages based on the principles of automata
theory and real analysis. While the domain of the mea-
sure �, i.e., 2LðGiÞ, is partially ordered, its range, which is
a subset of R � ð�1,1Þ, becomes totally ordered. As a
result, the relative performance of different supervisors
can be quantitatively evaluated in terms of the real
signed measure of the supervised sublanguages.
Positive weights are assigned to good marked states
and negative weights to bad marked states so that a con-
trollable supervisor is rewarded (penalized) for deleting
strings terminating at bad (good) marked states. In
order to evaluate and compare the performance of dif-
ferent supervisors a common quantitative tool is
required. To this effect, the proposed procedure com-
putes the measure of the supervised sublanguage gener-
ated by a supervisor using the event cost and
characteristic function assigned for the unsupervised
plant. Cost assignment to each event based on the
state, where it is generated, has been shown similar to
the conditional probability of the event. On the other
hand, the characteristic function is chosen based on
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Figure 3. Supervised plant under specification #1.
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Figure 4. Supervised plant under specification #2.
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Figure 5. Supervised plant under specification #3.
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Figure 6. Optimally supervised plant, i.e., with best

performance.
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the designer’s perception of the individual state’s impact
on the system performance. Two techniques are pre-
sented to compute the language measure for a DFSA.
One of them yields a closed form solution that is
obtained as the unique solution of a set of linearly inde-
pendent algebraic equations. The other is based on a
recursive procedure. The computational complexity of
both language measure algorithms is identical and is
of polynomial order in the number of states of the
DFSA. As such it is relatively straight-forward to
develop software analysis tools in standard languages
such as Matlab, C, and Java (Wang et al. 2003).

8.1. Recommendations for future research

Optimal discrete-event supervisory control can be
enhanced through appropriate usage of the language
measure. For example, in the current configuration of
the optimal control algorithm (Ray et al. 2004), if
there is no state qj such that �0

j < 0, then the plant
performance cannot be improved by event disabling
and the null controller S0 (i.e., no disabled event) is
the optimal controller for the given plant. This restric-
tion can be lifted through an appropriate performance
index that would be a function of the language measure
l but not identically equal to l as reported in Ray et al.
(2004). Work in this direction is in progress and is
expected to be reported in a forthcoming publication.
Synthesis of supervisory control systems may become

a significant challenge if some of the events are delayed,
intermittent, or not observable at all, possibly due to
sensor faults or malfunctions in network communica-
tion links. In that case, the control algorithms may
turn out to be computationally very complex because
of delayed or lost information on the plant dynamics.
Future work in this direction should involve research
on construction of language measures under partial
observation (Chattopadhyay and Ray 2004) and
synthesis of optimal control policies under partial obser-
vation to mitigate the detrimental effects of loss of
observability. The latter research could be an extension
of the earlier work on optimal control under full
observation (Ray et al. 2004).
It would be a challenging task to extend the concept

of (regular) language measure for languages higher up
in the Chomsky Hierarchy (Martin 1997) such as con-
text free and context sensitive languages. This extension
would lead to controller synthesis when the plant
dynamics is modelled by non-regular languages such
as the Petri-Net. The research thrust should focus
on retaining the polynomial order of computational
complexity.
Another critical issue is how to extend the language

measure for timed automaton, especially if the events
are observed with varying delays at different states.

Another research topic that may also be worth investi-
gating is: how to extend the field GFð2Þ, over which
the vector space of languages has been defined, to
richer fields like the set of real numbers.

Other areas of future research include applications of
the language measure in anomaly detection, model
identification, model order reduction, and analysis and
synthesis of interfaces between the continuously-
varying and discrete-event spaces in the language-
measure setting.

Appendices A: Measure theory

This appendix introduces the concepts of standard
measure-theoretic quantities that are used to establish
the language measure in the main body of this paper.

Definition A.1: A �-algebra M of a nonempty
language LðGiÞ � �� is a collection of subsets of LðGiÞ

which satisfies the following three conditions.

(i) LðGiÞ 2M;
(ii) If K 2M, then ðLðGiÞ � KÞ 2M;
(iii) [1j¼1Kj 2M if Kj 2M 8j.

Definition A.2: An at most countable collection fLkg

of members of a �-algebra M is a partition of a
member L 2M if L ¼ [kLk and Lk \ Lj ¼ ; 8k 6¼ j.

Definition A.3: Let M be a �-algebra of LðGiÞ. Then,
the set function �: M ! R � ð�1, þ1Þ, is called a
signed real measure if the following two conditions are
satisfied (Rudin 1987):

(i) �ð;Þ ¼ 0;
(ii) �ð[1j¼1LjÞ ¼

P1
j¼1 �ðLjÞ for every partition fLjg on

any member L 2M.

Note that, unlike a positive measure (e.g., the Lebesgue
measure), � is finite such that the series in part (ii) of
Definition A.3 converges absolutely in R and the result
is independent of any permutation of the terms under
union.

Definition A.4: Relative to the signed real measure �,
a sublanguage L 2M is defined to be

(i) null, denoted as L ¼ 0 , if �ðL \ JÞ ¼ 0, 8J 2M;
(ii) positive, denoted as L > 0, if L 6¼ 0 and

�ðL \ JÞ 
 0, 8J 2M;
(iii) negative, denoted as L, if L 6¼ 0 and �ðL \ JÞ � 0,
8J 2M.

Definition A.5: Total variation j�j on a �-algebra M is
defined as

j�jðLÞ ¼ sup
X
k

j�ðLkÞj ð52Þ

Signed real measure of regular languages 965



8L 2M where the supremum is taken over all partitions
fLkg of L.

Proposition A.1: Total variation measure j�j of any
regular language L is non-negative and finite i.e., j�jðLÞ 2
½0,1Þ. The proof follows from standard theorems on
complex measures (Rudin 1987).

Total variation can be, in general, defined for complex
measures (Rudin 1987) but it is restricted to a signed
real measure in this paper. The total variation of a
real signed measure �, can be represented as j�j ¼
�þ þ �� where �þ and �� are called positive and nega-
tive variations of � and are defined as

�þ ¼ 1
2
ðj�j þ �Þ and �� ¼ 1

2
ðj�j � �Þ: ð53Þ

Both �þ and �� are positive measures on M. It also
follows from the above equation that � ¼ �þ � ��.
This representation of � as the difference of positive
measure �þ and �� is known as the Jordan
Decomposition of � (Rudin 1987).

Proposition A.2: Every sublanguage L 2M can be
partitioned as L ¼ L0 [ Lþ [ L� where the mutually
exclusive sublanguages L0, Lþ and L� are called null,
positive, and negative, respectively, relative to a signed
real measure �.

Proof: The proof is based on the Hahn Decomposition
Theorem (Rudin 1987). œ

As a consequence of the above result, the following rela-
tions hold 8L 2M for positive and negative variations:

�þðLÞ ¼ � L
\

Lþ
� �

and ��ðLÞ ¼ �� L
\

L�
� �

:

ð54Þ

Appendix B: Convergence of the language measure

This appendix establishes necessary and sufficient condi-
tions for finiteness of the measure �, based on certain
properties of non-negative matrices, which are stated
without proof. Details of these results are available in
(Senata 1973, Plemmons and Berman 1979).

Definition B.1: Let A and B be real square matrices of
the same order n. Then, the notations for inequalities are
as follows:

A 
 B if aij 
 bij, 8i, j
A > B if A 
 B, A 6¼ B
A� B if aij > bij , 8i, j:

If the matrix A satisfies the condition A > 0, i.e. the
null matrix, then A is called a non-negative matrix

and if the condition A� 0 is satisfied, then it is called

a positive matrix.

Definition B.2: A square matrix A of order n is cogra-

dient to a matrix E if PAPT ¼ E for a permutation

matrix P; and A is called reducible if A is cogradient to

E ¼
B 0

C D

� 
,

where B and C are square matrices, or if n ¼ 1 and

A ¼ 0. Otherwise, A is irreducible.

It follows from the above definition that a positive

matrix is always irreducible.

Proposition B.1: A non-negative matrix A is irreducible

if and only if, for every ði, jÞ there exists a natural number

k such that a
ðkÞ
ij > 0, where a

ðkÞ
ij denotes the ði, jÞth element

of Ak.

Proposition B.2: If A 
 0 is irreducible and B 
 0, then

Aþ B is irreducible.

Another characterization of irreducibility of a

non-negative square matrix has a graph-theoretic

interpretation. This relationship can help to determine

under what conditions a given finite state automaton

G, which represents the supervised or unsupervised

plant model is irreducible by looking at connectivity of

its states. The following definitions are needed to

arrive at this conclusion.

Definition B.3: The associated directed graph, GðA) of

a square matrix A of order n, consists of n vertices

P1,P2, . . . ,Pn where an edge leads from Pi to Pj if and

only if aij 6¼ 0.

Definition B.4: A directed graph G is strongly con-

nected if for any ordered pair ðPi,PjÞ of vertices of G,

there exists a sequence of edges which leads from Pi

to Pj.

Proposition B.3: Given a matrix A, it is irreducible if

and only if GðAÞ is strongly connected.

If A is a non-negative square matrix, then the following

relationship holds between the spectral radius (i.e.,

maximum absolute eigenvalue)  of non-negative

matrices.

Proposition B.4: If 0 � A � B and Aþ B is irreducible

then ðAÞ < ðBÞ.

Definition B.5: A square matrix S of order n is called

(row) stochastic if it satisfies

sij 
 0,
Xn
j¼1

sij ¼ 1, 1 � i � n: ð55Þ
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Proposition B.5: The maximum eigenvalue of a stochas-
tic matrix S is one, i.e. ðSÞ ¼ 1. A non-negative matrix A
is stochastic if and only if e is an eigenvector of A corre-
sponding to the eigenvalue one, where e is the vector all of
whose entries are equal to one.

In order to show that ðI �&Þ�1 is invertible it suffices to
show that ð&Þ < 1.

Theorem B.1: If ð&Þ < 1 then there exists at least one
i, 1 � i � n, such that

Pn
j¼1 �ij < 1.

Proof: Proof follows from the fact that if
Pn

j¼1 �ij ¼ 1
8i, then & would be a stochastic matrix by Definition
B.5. Hence, by Proposition, B.5 ð&Þ ¼ 1) ðI �&Þ�1

is not invertible. œ

Theorem B.2: If
Pn

j¼1 �ij < 1 8i, 1 � i � n, then ð&Þ.

Proof: Let �i ¼ ð1�
Pn

j¼1 �ijÞ=n > 0. Let S be a matrix
of order n which is defined in the following manner

sij ¼ �i þ �ij , 81 � i, j � n:

It is clear that S � 0 and hence S is irreducible. Also S
is a stochastic matrix and by Proposition B.5, the spec-
tral radius ðSÞ ¼ 1. Since 0 � & < and &þ S is irredu-
cible by Proposition B.2, it follows that ð&Þ < ðSÞ ¼ 1
from Proposition B.4. œ

The above sufficiency condition is more strict than the
necessary condition required in Theorem B.1.
However, the necessary condition is not sufficient as
seen from the following example.

& ¼

0:2 0 0:8 0
0 0:2 0:3 0:5

0:5 0 0:5 0
0:1 0:2 0:4 0

0BB@
1CCA:

This matrix & satisfies conditions as required in
Theorem B.1, but ð&Þ ¼ 1. It is possible to relax the
strict inequality

Pn
j¼1 �ij < 1 8i, 1� i� n in Theorem

B.2, but with additional conditions on structure of &.
For example, under such relaxed conditions, if &þ S
is irreducible, then still ð&Þ < 1. This follows from
the fact that application of Proposition B.4, only
requires irreducibility of &þ S. In order to determine
the irreducibility of a matrix, the graph-theoretic
interpretation, described earlier, can be a useful tool.
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Supervisory control theory for discrete event systems, introduced by Ramadge and Wonham,

is based on a non-probabilistic formal language framework. However, models for physical

processes inherently involve modelling errors and noise-corrupted observations, implying

that any practical finite-state approximation would require consideration of event occurrence

probabilities. Building on the concept of signed real measure of regular languages, this paper

formulates a comprehensive theory for optimal control of finite-state probabilistic processes.

It is shown that the resulting discrete-event supervisor is optimal in the sense of elementwise

maximizing the renormalized langauge measure vector for the controlled plant behaviour and

is efficiently computable. The theoretical results are validated through several examples includ-

ing the simulation of an engineering problem.

1. Introduction

Supervisory control theory (SCT) of discrete-event

systems (DES), pioneered by Ramadge and

Wonham (1987), models a physical or human-engi-

neered process as a finite-state language generator and

constructs a supervisor that attempts to constrain the

‘‘supervized’’ plant behaviour within a specification lan-

guage. The original theory is based on a deterministic

language framework. Although allowing non-determin-

ism in the sense that more than one continuation of a

generated event trace (i.e., a string) is possible, no

attempt is made to quantify this randomness.

As Wonham himself observes in Lawford and

Wonham (1993), ‘‘the choice of a possible continuation

of a string is made by some internal structure unmodeled

by the systems designer’’. The notion of probabilistic

languages in the context of studying qualitative stochas-

tic behaviour of discrete-event systems first appears

in Garg (1992a, b), where the concept of p-languages

(‘p’ implying probabilistic) is introduced and an algebra

is developed to model probabilistic languages based on

concurrency (Milner 1989). A regular p-language is

essentially a set of prefix-closed traces of events,

generated by a finite-state automaton with probabilities

associated with the transitions. A p-language-theoretic

model differs in several important aspects from

other discrete-event models of stochastic analysis

such as Markov chains (Cassandras and Lafortune

1999), stochastic Petri nets (Molloy 1982, Chung et al.

1994), probabilistic automata (Rabin 1963, Paz 1971,

Doberkat 1981), and fuzzy models (Lee and

Zadeh 1969). Garg et al. (1999) and Kumar and Garg

(2001) provide a brief comparison of the p-language-

theoretic modelling paradigm with the above-mentioned

theories.
Lawford and Wonham (1993) have attempted to

extend discrete-event (SCT) to plants modelled by

p-languages, where a formal statement of the probabilis-

tic supervisory control problem (PSCP) first appears and

the notion of probabilistic supervision is introduced by

random disabling of controllable events. The key differ-

ence from other stochastic supervision approaches (e.g.,

Mortzavian 1993) lies in the fact that the computed

probabilistic supervisor is not allowed to change the*Corresponding author. Email: axr2@psu.edu
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underlying plant dynamics in the following sense:
‘‘The probabilistic effect of random disablement is deter-
mined entirely by the plant’’. The control objective is
specified as a p-language and necessary and sufficient
conditions are derived for existence of a probabilistic
supervisor that attempts to restrict the plant language
within the control specification in a probabilistic sense.
The theory of supervision of p-languages is further
developed by Kumar and Garg (2001), where the control
objective is specified as upper and lower bound
constraints. The upper bound is a non-probabilistic
language that serves as a legality constraint, while the
lower bound is a p-language. This relatively relaxed
approach to control objective specification allows for a
non-probabilistic supervisor that attempts to cut down
illegal event traces, while ensuring that legal traces
occur with probabilities greater than or equal to that
specified by the lower bound. Intuitively, the designed
supervisor stops ‘‘bad’’ strings from occurring while
guaranteeing that ‘‘good’’ strings occur with some mini-
mum pre-set frequency. However, construction of such
a control objective specification may not be possible in
many applications (e.g., battlefield command, control,
communications, and intelligence (C3I) (Phoha et al.
2002)), especially if the decisions are to made in real
time. For the theory to be useful in practice, one
must generate the specification from the definition of
the physical problem at hand. Given that one has
to come up with a non-probabilistic language to serve
as the upper legality constraint and a probabilistic
language to serve as the lower bound, this goal
may not always be achievable. The situation becomes
worse for non-stationary stochastic environments,
where the control specifications may have to be updated
online.
A significantly simplified approach to the above pro-

blem is reported by Ray (2005) and Ray et al. (2005),
where the control objective is specified as characteristic
weights on the states of the plant automaton. These
weights are normalized in the interval ½�1, 1� with posi-
tive weights assigned to good states and negative weights
to bad states. A signed real measure of regular languages
(of event traces) is defined as a function of the character-
istic weights and the state transition probabilities; and
supervisory control laws are synthesized by elementwise
maximizing the language measure vector (Ray et al.
2004, 2005). Intuitively, the supervisor ensures that the
generated event traces cause the plant to visit the
‘‘good’’ states while attempting to avoid the ‘‘bad’’
states in a probabilistic sense. As mentioned earlier,
Kumar and Garg’s work on supervisory control of
probabilistic automata (Kumar and Garg 2001) also
has a notion of ‘‘good’’ and ‘‘bad’’ strings. However,
the classification is strictly binary; the theory has no
way of saying if one ‘‘good’’ string is ‘‘better’’ than

another ‘‘good’’ string and vice versa. This implies that
the supervisor must eliminate all bad strings and hence
may not be optimal, or fail to exist if the conditions
defined in Kumar and Garg (2001) are not satisfied.
In contrast, in the measure-theoretic approach
(Ray 2005), the event traces are less or more desirable
in a continuous scale with the supervisor optimizing
the controlled plant behaviour to ensure that the
‘‘most’’ desirable strings occur ‘‘most’’ often. This has
an immediate advantage that the problem of existence
disappears; the optimal supervisor always exists and
can be computed effectively with polynomial complex-
ity. The latter approach is, in one sense, closer to
Markov chain modelling since the control specification
is state-based. However, as shown by Ray (2005),
this does not restrict the modeling power of the techni-
que. It is shown in Kumar and Garg (2001) that,
in general, maximally permissive supervisors are
non-unique. For the measure-theoretic approach, how-
ever, the optimization is shown to yield unique maximal
permissiveness among all optimal supervisors (Ray et al.
2004, 2005).

Optimal control in the context of discrete event
dynamic systems has been addressed earlier by several
investigators as cited in (Ray et al. 2004). For example,
Sengupta and Lafortune (1998) have analysed
non-probabilistic DES with assigned event and control
costs; the optimal supervisor is computed in the frame-
work of dynamic programming (DP) with two critical
assumptions to guarantee polynomial complexity of
the solution: all costs are strictly positive and there is
only one marked state (Sengupta and Lafortune 1998,
p. 34). The work reported in Ray (2005) and Ray
et al. (2005) is different in the sense that the latter
deals with probabilistic automata and the optimization,
even in the completely general case, has guaranteed
polynomial complexity of Oðn3Þ, where n is the number
of states in the unsupervised plant model. The mea-
sure-theoretic approach was originally reported for a
restricted class of terminating p-languages Ray (2005)
and Ray et al. (2005); and this restriction has been elimi-
nated in a subsequent publication (Chattopadhyay and
Ray 2006a).

The notion of terminating and non-terminating auto-
mata is originally due to Garg (19992a, b). A probabil-
istic automaton is terminating if there exist states at
which the sum of the probabilities of all defined events
is strictly less than 1. The interpretation is that the differ-
ence of the sum from 1 is the probability that the plant
terminates operation at that particular state. It is shown
in Ray (2005) that the language measure vector can be
expressed as ½I�&��1s where & is the transition prob-
ability matrix and s is the characteristic vector, where
�ij is the probability of transition from the ith state to
the jth state and �i is the characteristic weight of the

2 I. Chattopadhyay and A. Ray
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state i). A sufficient condition for the inverse of
�
I�&

�
to exist is that

P
j �ij < 1 2 i, i.e., the plant has a strictly

non-zero probability of termination from each state.
This paper eliminates the above restrictive assumption

by adopting the recently reported renormalized measure

of regular languages (Chattopadhyay and Ray 2006a)

as the performance index. It also extends the measure-

theoretic concept for optimal control of terminating

plants (Ray et al. 2004) to non-terminating plant

models, which requires a minor modification of the

control philosophy as explained below.
Supervisors in the SCT paradigm are allowed to affect

the underlying plant behaviour by selectively disabling

controllable events (Ramadge and Wonham 1987).

In case of terminating p-languages, a similar approach

suffices; the supervisor selectively nulls the occurrence

probability of controllable events to achieve the desired

control objective. However, the non-terminating case

poses a problem since any such disabling action converts

the system to a terminating p-language (i.e., the prob-

abilities of the events defined at a state fail to add up

to 1). The solution (Kumar and Garg 2001) is to propor-

tionately increase the probabilities of the remaining

enabled events at the state at which event disabling is

undertaken. An alternative approach is proposed in

this paper, where each disabled event creates a self

loop at the state (at which the event was generated)

with occurrence probability of the original transition.
The paper is organized in six sections and an

appendix. Section 2 lays down the basic framework of

the analysis and briefly reviews the original notion of

language measure (Ray 2005) and its renormalization

(Chattopadhyay and Ray 2006a). Section 3 formulates

the optimal control problem based on the concept of

renormalized measure and presents the key results.

Section 4 presents a solution of the optimal control

problem and derives the necessary algorithms for its

implementation. Section 5 presents an engineering

example, where the optimal supervisor is designed for

a three-processor message decoding system. The

paper is summarized and concluded in x 6 along with

recommendations for future research. Appendix G

establishes bounds on the derivatives of the

renormalized measure that is necessary for formulation

of the optimal control law in x 3.

2. Preliminary concepts

This section briefly reviews the concept of signed real

measure of regular languages Ray (2005) and Ray

et al. (2005) followed by a review of the notion of

renormalized measure and the pertinent notations used

in the sequel.

2.1 Brief review of language measure

Let the plant behaviour be modelled as a deterministic

finite state automaton (DFSA) as Gi, ðQ,�, �, qi,QmÞ,

where Q is the finite set of states with jQj ¼ n, and

qi2Q is the initial state; � is the (finite) alphabet of

events with �j j ¼ m; the Kleene closure of � is denoted

as �? that is the set of all finite-length strings of events

including the empty string "; the (possibly partial) func-

tion � : Q��! Q represents state transitions and

�?: Q��? ! Q is an extension of �; and Qm � Q is

the set of marked (i.e., accepted) states.

Definition 1: The language L(Gi) generated by the

DFSA Gi is defined as LðGiÞ ¼ fs 2 �� j ��ðqi, sÞ 2 Qg.

Definition 2: The marked language Lm(Gi) by the

DFSA Gi is defined as LmðGiÞ ¼ fs 2 ��j ��ðqi, sÞ 2 Qmg.

The language LðGiÞ of the DFSA Gi is partitioned as

the non-marked and the marked languages,

LoðGiÞ,LðGiÞ � LmðGiÞ and LmðGiÞ, consisting of event

strings that, starting from qi 2 Q, terminate at one of

the non-marked states in Q�Qm and one of

the marked states in Qm, respectively. The set Qm is

partitioned into Qþm and Q�m where Qþm contains all

good marked states that one may desire to terminate

on, and Q�m contains all bad marked states that one

would attempt to avoid terminating on, although it

may not always be possible to bypass a bad state

before reaching a good state. The marked language

LmðGiÞ is further partitioned into LþmðGiÞ and L�mðGiÞ

consisting of good and bad strings that, starting from

qi, terminate on Qþm and Q�m, respectively.
A signed real measure �: 2�?

! R, �1, 1ð Þ is

constructed for quantitative evaluation of every event

string s 2 �?. The language LðGiÞ is decomposed into

null, i.e., LoðGiÞ, positive, i.e., LþmðGiÞ, and negative,

i.e., L�mðGiÞ sublanguages.

Definition 3: The language of all strings that, starting

at a state qi 2 Q, terminates on a state qj 2 Q, is denoted

as Lðqi, qjÞ. That is,

Lðqi, qjÞ, fs 2 LðGiÞ : �
?ðqi, sÞ ¼ qjg: ð1Þ

Definition 4: The characteristic function that assigns a

signed real weight to each state qi, i ¼ 1, 2, . . . , n, is

defined as: � : Q! ½�1, 1� such that

�ðqjÞ 2

½�1, 0Þ if qj 2 Q�m

f0g if qj =2Qm

ð0, 1� if qj 2 Qþm

8>>><>>>:
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Definition 5: The event cost is conditioned on a DFSA
state at which the event is generated, and is defined as
~� : �? � Q! ½0, 1� such that 8qj 2 Q, 8�k 2 �,
8s 2 �?,

1. ~�½�k, qj�, ~�jk 2 ½0, 1Þ;
P

k ~�jk < 1;
2. ~�½�, qj� ¼ 0 if �ðqj, �Þ is undefined; ~�½�, qj� ¼ 1;
3. ~�½�ks, qj� ¼ ~�½�k, qj� ~�½s, �ðqj, �kÞ�.

The event cost matrix, denoted as e�-matrix, is
defined as

e� ¼ ~�11 . . . ~�1m
..
. . .

. ..
.

~�n1 . . . ~�nm

264
375

An application of the induction principle to part (3) in
Definition 5 shows ~�½st, qj� ¼ ~�½s, qj� ~�½t, �

�ðqj, sÞ�.
The condition �k ~�jk < 1 provides a sufficient condition
for the existence of the real signed measure as discussed
in Ray (2005) along with additional comments on the
physical interpretation of the event cost.
Now let us define the measure of a sublanguage of the

plant language L Gið Þ in terms of the signed characteristic
function � and the non-negative event cost ~�.

Definition 6: The signed real measure � of a singleton
string set fsg � Lðqi, qjÞ � LðGiÞ 2 2�? is defined as

�ðfsgÞ, ~�ðs, qiÞ�ðqjÞ 8s 2 Lðqi, qjÞ:

The signed real measure of Lðqi, qjÞ is defined as

� Lðqi, qjÞ
� �

,

X
s2Lðqi, qjÞ

� fsgð Þ

and the signed real measure of a DFSA Gi, initialized at
the state qi 2 Q, is denoted as

�i,�ðLðGiÞÞ ¼
X

j
� Lðqi, qjÞ
� �

:

Definition 7: The state transition cost of the DFSA is
defined as a function �: Q� Q! ½0, 1Þ such that

�ðqj, qkÞ

¼

0 if f� 2�: �ðqj, �Þ ¼ qkg ¼;P
�2�:�ðqj, �Þ¼qk

~�ð�, qjÞ, �jk otherwise :

8<:
ð2Þ

The state transition cost matrix, denoted as &-matrix, is
defined as

& ¼

�11 . . . �1n
..
. . .

. ..
.

�n1 . . . �nn

264
375:

It has been shown in (Ray 2005 and Ray et al. 2005)
that the measure �i,�ðLðGiÞÞ of the language LðGiÞ,
with the initial state qi, can be expressed as
�i ¼

P
j �ij �j þ �i where �i,�ðqiÞ. Equivalently, in

vector notation

l ¼ &lþ s ¼) l ¼ ½I�&��1s; ð3Þ

where the measure vector l, ½�1 �2 � � � �n�
T and

the characteristic vector s, ½�1 �2 � � � �n�
T; and the

condition
P

j ~�ij < 1 2 i (see Definition 5) is sufficient
for the inverse to exist.

Although the preceding analysis reported
in (Ray 2005 and Ray et al. 2005) was intended for
non-probabilistic regular languages, the event costs can
be easily interpreted as occurrence probabilities.
As such the ~&-matrix is analogous to the morph
matrix of a Markov chain in the sense that an element
~�ij represents the probability of the jth event occurring
at the ith state with the exception that the strict inequal-
ity condition

P
j ~�ij < 1 is enforced instead of satisfying

the equality. Equivalently, the &-matrix is analogous to
the state transition probability matrix of a Markov
chain in the sense that an element �jk is analogous to
the transition probability from state qj to state qk with
the exception that the strict inequality conditionP

k �jk < 1 is enforced instead of satisfying the
equality. It follows that the preceding analysis is applic-
able to the case of terminating probabilistic languages
(Garg et al: 1992a, b) that have a strictly non-zero
probability of termination at each state.

Let �u denote the set of all unmodelled events in the
terminating plant. A new unmarked absorbing state
qnþ1, called the dump state (Ramadge and Wonham
1987), is created and the transition function � is extended
to �ext : ðQ [ fqnþ1gÞ � ð� [�uÞ ! ðQ [ fqnþ1gÞ. The
residue �j ¼ 1�

P
k �jk denotes the probability of transi-

tion from qj to qnþ1. Consequently, the &-matrix
(see Definition 7) is augmented to obtain the stochastic
state transition probability matrix as

&aug ¼

�11 �12 . . . �1n �1

�21 �22 . . . �2n �2

..

. ..
. . .

. ..
. ..

.

�n1 �n2 . . . �nn �n

0 0 0 . . . 1

26666664

37777775: ð4Þ

Since the dump state qnþ1 is not marked (Ramadge and
Wonham 1987), it follows from Definition 4 that the
corresponding state weight �nþ1 ¼ 0. Hence, the
�-vector is augmented as

saug ¼ ½s
T 0�T: ð5Þ

4 I. Chattopadhyay and A. Ray
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Denoting ? ¼ ½�1 �2 � � � �n�
T, where �i 2 ð0, 1Þ is the

probability of transition from the state qi to the dump
state, it follows from equations (4) and (5) that the
measure of the augmented system (Chattopadhyay and
Ray 2006a) is

laugð?Þ ¼ ½lð?Þ
T 0�T: ð6Þ

Then, the event cost matrix (see Definition 5) and the
state transition cost matrix (see Definition 7) can be
represented as

e&ð?Þ ¼ �I�Diag½?�

�eP and &ð?Þ ¼

�
I�Diag½?�

�
P;

ð7Þ

where eP and P are both stochastic matrices (Bapat and
Raghavan 1997), i.e., �j

ePij ¼ 1 8i 2 f1, . . . ,mg and
�jPij ¼ 1 8i 2 f1, . . . , ng.
If the probability of termination (or equivalently the

probability of transition to the dump state) is equal
for all states, qi 2 Q, i.e., �i ¼ � 8i 2 f1, 2, . . . , ng, then
equation (6) is expressed as

laugð�Þ ¼ ½lð�Þ
T 0�T ð8Þ

Consequently, e& and& in equation (7) are represented as

e&ð�Þ ¼ ð1� �ÞeP and &ð�Þ ¼ ð1� �ÞP ð9Þ

where � is the uniform probability of termination at all
states; and botheP and P retain the properties of stochas-
tic matrices (Bapat and Raghavan 1997).

2.2 Renormalization of language measure

The notion of language measure has been recently
extended to non-terminating models by assuming a uni-
form non-zero probability of termination (�) at each
state, renormalizing the language measure vector with
respect to the probability of termination and computing
the limit of the renormalized measure (Chattopadhyay
and Ray 2006a) as �! 0þ. As the probability of termi-
nation approaches zero (i.e., �! 0þ), and the plant
coincides with the desired non-terminating model in
the limit. The construction of renormalized measure is
briefly outlined below.
The regular language generated by the DFSA under

consideration is a sublanguage of the Kleene closure
�� of the alphabet �, for which the automaton states
can be merged into a single state. In that case, the
state transition cost matrix &ð�Þ degenerates to the
1� 1 matrix ½1� �� and the normalized state weight

vector s becomes one-dimensional and can be assigned
as s ¼ 1; consequently, the measure vector lð�Þ
degenerates to the scalar measure ��1. To alleviate the
singularity of the matrix operator ½I�&ð�Þ� at �¼ 0,
the measure vector lð�Þ in (3) is normalized with respect
to ��1 to obtain the renormalized measure vector.

Definition 8: The renormalized measure is defined as

mð�Þ ¼ � lð�Þ ¼ � ½I�&ð�Þ��1s ð10Þ

and it follows from (8) that

� laugð�Þ ¼ ½mð�Þ
T 0�T: ð11Þ

3. Optimal control problem: formulation

The following notations are needed for elementwise
comparison of finite-dimensional vectors and matrices
for the analysis developed in the sequel.

Notation 1: Let Va and Vb be ðm� nÞ real matrices.
The following elementwise equality and inequalities
imply that�

Va�EV
b

�
,

�
Va

ij ¼ Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg�

Va 6¼E Vb

�
,

�
Va

ij 6¼ Vb
ij

�
9 i 2 f1, . . . ,ng, j 2 f1, . . . ,mg�

Va^EV
b

�
,

�
Va

ij � Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg�

Va >E Vb

�
,

�
Va

ij > Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg:

For the terminating plant, investigated in (Ray 2005
and Ray et al. 2005), the optimal supervisor selectively
disables controllable transitions by setting their occur-
rence probabilities to zero. This implies that if &? and
& are the transition probability matrices for the opti-
mally supervised plant and the unsupervised plant,
respectively, then

&? %E&, i:e:, �?ij 	 �ij:

Since for any non-trivial supervisor, there is at least one
disabled transition in the supervised plant, i.e.,

9i, j such that �i, j > 0 and �?i, j ¼ 0

it follows that if the unsupervised plant is non-
terminating, then any non-trivial supervision will result
in a terminating model. The policy of Kumar and
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Garg 2001 maintains the non-termination property by
proportionately increasing the probabilities of the
remaining enabled events at the state at which
the disabling action is applied. The first issue here is
that the supervisor must be able to affect the event
occurrence probabilities, which is more than just inhibit-
ing a transition. The second issue is that there is a
possibility of disabling all events defined at a given
state if all these events are controllable. In that case,
the row sum cannot be maintained at 1 as it becomes
strictly equal to zero. Thus, it is necessary to impose
special constraints on the unsupervised plant to circum-
vent this situation. This paper investigates an alternative
approach as described below.

Definition 9 (control philosophy): Disabling any
transition � at a given state q results in reconfiguration
of the automaton structure as: Set the self-loop
�ðq, �Þ ¼ q with the occurrence probability of � from
the state q remaining unchanged in the supervised and
unsupervised plants.
This is equivalent to adding a self-loop to the state at

which the event is being disabled, with the same occur-

rence probability as the disabled transition.

Preposition 1: For the control philosophy in
Definition 9, a supervised plant is non-terminating if
and only if the unsupervised plant is non-terminating.

Proof: The proof follows from two lemmas.

Lemma 1: Each row sum of the &-matrix remains
unchanged after supervisory actions for the control
philosophy in Definition 9.

Proof: Let & and &y be the transition probability
matrices for the unsupervised and supervised plants,
respectively. Let there be exactly one disabled transition,
in which a (controllable) event � at state qi is disabled
and let the occurrence probability of � at state qi be ~�.
If �ðqi, �Þ ¼ qk, then it follows that

kth column

#

&y ¼ &þ

0 0 � � � � � � 0 0

..

. . .
. ..

. ..
. ..

.

0 � � � ~� � � � � ~� 0

..

.
� � � 0 . .

.
0 ..

.

..

. ..
. ..

. . .
. ..

.

0 � � � � � � � � � � � � 0

266666666664

377777777775
 ith row

implying
P

j �
y

ij ¼
P

j �ij 8i. The proof follows by
induction on the number of disabled events. œ

Lemma 2: Self-loops cannot be disabled.

Proof: For the control philosophy in Definition 9,
disabling a self-loop at any given state causes regenera-
tion of the self-loop at the same state with identical
occurrence probability. œ

It is evident from the above two lemmas that each row
sum of the reconfigured &-matrix remains invariant.
The proof of Proposition 1 is thus complete. œ

Remark 1: The control philosophy in Definition 9 is
natural in the following sense. If qi !� qk, and the
controllable event � is disabled at state qi, then
the sole effect of the supervisory action is to prevent
the plant from making a transition to the state qk.
That is, the plant is forced to stay at the original state
qi and this is represented by the additional self-loop at
state qi instead of the original arc from qi to qk.

The notion of controllability is now clarified in the
context of the present paper.

Definition 10 (controllable transitions): For a given
plant, transitions that can be disabled in the sense of
Definition 9 are defined to be controllable transitions
in the sequel.

In view of Definition 10, controllability becomes state-
based, i.e., transitions labelled by the same event may be
controllable from one state and uncontrollable from
some other state. This implies that the event alphabet
� cannot be partitioned into uncontrollable and
controllable events sets as proposed in Ramadge and
Wonham (1987). Thus, a controllable transition qi

�
!
qk

refers to a triple fqi, �, qkg and the set of all such
transitions is denoted by C .

3.1 Model specification

Plant models considered in this paper are deterministic
finite state automata (DFSA) with well-defined event
occurrence probabilities. In other words, the occurrence
of events is probabilistic, but the state at which the plant
ends up, given a particular event has occurred, is
deterministic. Furthermore, no emphasis is laid on the
initial state of the plant and it is assumed that the
plant may start from any state. Furthermore, having
defined the characteristic state weight vector s, it may
not be necessary to specify the set of marked states,
because if �i ¼ 0, then qi is not marked and if �i 6¼ 0,
then qi is marked. Therefore, plant models with an
arbitrary uniform termination probability � 2 ð0, 1Þ,
i.e., �i ¼ � 8i 2 f1, 2, . . . , ng, can be completely specified
by a sextuple as

Gð�Þ ¼
�
Q,�, �,e&ð�Þ, s,C

�
; ð12Þ

6 I. Chattopadhyay and A. Ray

*** 2006 style [23.4.2007–5:01pm] [Revised Proof] [1–20] [Page No. 6] {TANDF_REV}TCON/TCON_A_228536.3d (TCON) TCON_A_228536



where e&ð�Þij is the occurrence probability of event �j from
state qi and

P
j
e&ð�Þij ¼ 1� � 8i. An application of (7)

with uniform uniform termination probability � yields
an alternative representation of the sextuple in (12).

Gð�Þ ¼
�
Q,�, �, ð1� �ÞeP, s,C

�
; ð13Þ

where eP is the the morph matrix of the underlying
Markov chain.
As �! 0þ, the resulting non-terminating plant model

is denoted as

Gð0Þ ¼ ðQ,�, �,eP, s,C Þ: ð14Þ

Definition 11: Given � 2 ð0, 1Þ, a terminating plant
Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ is defined to be the
�-neighbour of the non-terminating plant
Gð0Þ ¼ ðQ,�, �,eP, s,C Þ.

For a given non-terminating plant G(0) and a fixed
�0 2 ð0, 1Þ, there is exactly one �0-neighbour Gð�0Þ.

Notation 2: Let � 2 ð0, 1Þ be the unform probability of
termination for a terminating plant Gð�Þ ¼ ðQ,�, �,
ð1� �ÞeP, s,C Þ. Let P be the state transition probability
matrix of the underlying Markov chain, which is gener-
ated from � and e& (see equation (2)). Then, the (renor-
malized) language measure vector (see Definition 8)
is obtained as

mð�Þ ¼ �
h
I� ð1� �ÞP

i�1
s ð15Þ

where ð1� �ÞP is the sub-stochastic transition probabil-
ity matrix for the terminating plant. Similarly, for a non-
terminating plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ having the
stochastic transition probability matrix P, the (renorma-
lized) measure vector (Chattopadhyay and Ray 2006a) is
denoted as

mð0Þ ¼ lim
�!0þ

mð�Þ ¼ lim
�!0þ

�

�
I� ð1� �ÞP

��1
s ð16Þ

In the sequel, renormalized measure m in equations (10)
and (11) is referred to as measure for brevity.

3.2 Construction of an optimal supervisor

A supervisor disables a subset of the set C of controlla-
ble transitions and hence there is a bijection between the
set of all possible supervision policies and the power set
2C . That is, there exists 2jC j possible supervisors and
each supervisor is uniquely identifiable with a subset of
C and the language measure � allows a quantitative
comparison of different supervision policies.

Definition 12: For an unsupervised (non-terminating)
plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ, let Gy and Gz be the
supervised plants with sets of disabled transitions,
Dy � C and Dz � C , respectively, whose measures are
my and mz. Then, the supervisor that disables Dy is
defined to be superior to the supervisor that disables
Dz if my^E mz and strictly superior if my>E mz.

Definition 13 (Optimal supervision problem): Given a
(non-terminating) plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ, the
problem is to compute a supervisor that disables a
subset D?

� C , such that

m? ^E my 8Dy � C

where m? and my are the measure vectors of the supervised
plants G? and Gy under D? and Dy, respectively.

Remark 2: For a non-trivial plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ (i.e., jQj > 1), there may exist two supervisors
that are not comparable in the sense of Definition 12.
For example, given a two-state unsupervised plant G,
if Gy and Gz are supervised plants under two different
supervisors with disabled transition sets, Dy and Dz,
respectively, then the following situation may occur for
the indices i 6¼ j.

�yi > �zi

	 
 ^
�yj < �zj

	 

;

where m
y

i and m
z

i are the ith elements of the measure vec-
tors for Gy and Gz, respectively. It is shown in the next
section that, for a given plant, an optimal supervisor
(in the sense of Definition 13) does exist for which the
measure vector is elementwise greater than or equal
to the measure vector of the plant under any other
supervision policy.

Terminating plant models have sub-stochastic
transition probability matrices (see Definition 7). By
postulating the existence of unmodelled transitions,
such plants can be transformed to non-terminating
models as explained below. For uniform termination
probability � 2 ð0, 1Þ, equations (8) and (11) suggest
the possibility of computing optimal supervision
policies for terminating plants based on the analysis of
non-terminating plants.

4. Optimal control problem: solution

This section presents a solution to the optimal supervi-
sion problem by assuming a uniform non-zero probabil-
ity of termination, �, at each state. Then, it is shown that
the solution for the corresponding non-terminating
plant can be obtained from the control policy of the
terminating plant and the bounds on the derivatives of
the language measure (see Appendix A).
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Let � 2 ð0, 1Þ be the uniform termination probability of
an unsupervised plant Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ.
The resulting (substochastic) state transition cost
matrix is &ð�Þ ¼ ð1� �ÞP. For such plants with uniform
non-zero termination probability, the following lemma
states existence of an augmented plant model.

Lemma 3: For the terminating plant Gð�Þ ¼
ðQ,�, �, ð1� �ÞeP, s,C Þ, let the corresponding
augmented non-terminating plant be Gaug ¼ ðQaug,
�aug, �aug,e&aug, saug,C Þ. Let m?ð�Þ and myð�Þ be the mea-
sures of the terminating plant with the respective sets of
disabled transitions D?

� C and Dy � C . Then,

9D?
� C s:t: m?ð�Þ^Emyð�Þ 8Dy � C 8� 2 ð0, 1Þ

ð17Þ

which implies that an optimal supervisor for Gaug exists
(in the sense of Definition 13) which disables D?

� C .

Proof: The first n elements of the measure vectors of
the augmented plant and the unaugmented plant are
identically equal as seen in equation (11). Then, the
proof follows from Definition 12. œ

The remainder of this section derives an algorithm for a
supervision policy that elementwise maximizes
the measure of the terminating plant G(�). Lemma 3
guarantees that the optimal policy is based on a non-
terminating plant.

Proposition 2 (Monotonicity): Let &ð�Þ and mð�Þ be the
state transition cost matrix and the measure vector of
an unsupervised plant Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ,
respectively. Let a supervisor be constructed to reconfi-
gure the plant by disabling a set of controllable transi-
tions Dy � C such that & is modified to &y by
following Algorithm 1. Then, denoting the measure
vector of the supervised plant by my, it follows that
my^E m; and equality holds if and only if &y ¼ &.

Proof: It follows from equation (15) in Notation 2 that

my � m ¼ � I�&y
� ��1

�� I�&½ �
�1s

¼ � I�&y
� ��1

½I�&� � ½I�&y�
� �

I�&½ �
�1s

¼ � I�&y
� ��1

&y �&
� �

m:

Defining the matrix ",&y �&, and the ith row of " as
�i, it follows that

�i
Tm ¼

X
j

�ij�j ¼
X
j

�	ij�ij ð18Þ

where

�ij ¼

ð�i � �jÞ if �i > �j

0 if �i ¼ �j

ð�j � �iÞ if �i < �j

8>><>>: ¼)�ij ^ 0 8i, j:

Since
Pn

i¼1&ij ¼
Pn

i¼1&
y

ij; 8j, k, it follows from non-
negativity of &, that ½I�&y��1>E 0. Since 	i � 0 8i, it
follows that �i

Tm � 0 8i ) my^E m. For �j 6¼ 0 and
� as defined above, �T

i mk ¼ 0 if and only if �¼ 0.
Then, &y ¼ & and my ¼ m. œ

Corollary 1: Under an identical situation to that
assumed in the statement of Proposition 2, let the
plant be reconfigured as given in Algorithm 2. Then,
denoting the measure vector of the modified plant by
my, it follows that my%E m; and equality holds if and

only if &y ¼ &.

Proof: The proof is similar to that of

Proposition 26. œ

Proposition 2 facilitates formulation of the algorithm
for computing an optimal supervisor for plants with

8 I. Chattopadhyay and A. Ray
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uniform non-zero probability of termination at

each state. Let the kth iteration of the algorithm com-

pute a set D½k� � C of controllable transitions to be

disabled in the sense of the control philosophy in

Definition 9. The language measure vector computed

in the kth iteration of the algorithm is denoted by m½k�.

The algorithm terminates at the ðkþ 1Þth iteration if

D½k� ¼ D½kþ1�, which is the optimal set of disabled transi-

tions computed by the algorithm and is denoted by D?.

The algorithm is started with the unsupervised plant

(i.e., with all controllable transitions enabled) and

hence D½0� ¼ ;. A formal description is given in

Algorithm 3.

Proposition 3: Let m½k� be the language measure

vector computed in the kth iteration of Algorithm 3.

The measure vectors computed by the algorithm

form an elementwise non-decreasing sequence, i.e.,

m½kþ1�^E m½k� 8k.

Proof: Let the state transition probability matrix in

the kth iteration of Algorithm 3 be denoted by &½k�.
Then, the matrix &½kþ1� is generated from &½k� by follow-

ing the procedure as described in Proposition 2. Hence,

m½kþ1�^E m½k�. œ

Proposition 4 (effectiveness): Algorithm 3 is an

effective procedure (Hopcroft et al. 2001), i.e., it is

guaranteed to terminate.

Proof: Let Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ be the unsu-

pervised plant and let CardðC Þ ¼ ‘ 2 N. Denoting the

set of all permutations of the vector ½1 2 � � � ‘�T by

P ð‘Þ, a function 
 : 2C�!P ð‘Þ is defined as

1: 8Dy � C , �yi1 > �yi2 > � � � > �yin

	 

¼) 
ðDyÞ ¼ ½i1 i2 � � � in�

T
� �

2: �yis ¼ �
y

it

	 

^ is > itð Þ

¼) if 
ðDyÞs ¼ is and 
ðD
y
Þt ¼ it then s > t

� �
:

Let m½k� be the measure vector computed in the kth itera-
tion of Algorithm 3. Then, m½k� ¼ m½kþ1� implies that

Algorithm 3 terminates in kþ 1 iterations according to

its stopping rule.
Next let D½k1� and D½k2� be the disabling sets in itera-

tions k1 and k2, respectively. If 
ðD
½k1�Þ ¼ 
ðD½k2�Þ, then

m½k1þ1� ¼ m½k2þ1�. Since 
ðD½k1�Þ ¼ 
ðD½k2�Þ, it follows from

the definition of 
 that if �½k1�i > �½k1�j , then �½k2�i ^ �½k2�j .

If �½k2�i > �½k2�j then controllable transitions qi!� qj are

disabled in both iterations k1 þ 1 and k2 þ 1. If

�½k1�i ¼ �
½k1�
j , then disabling or enabling controllable

transitions qi!� qj does not affect the measure vector.

Hence, it follows that m½k1þ1� and m½k2þ1� can be obtained

by disabling the same set of controllable transitions,

thus implying m½k1þ1� ¼ m½k2þ1�. Since the measure

vectors can repeat only at the final iteration,

Algorithm 3 is guaranteed to terminate within

CardðP ð‘ÞÞ ¼ ‘! iterations. Therefore, effectiveness of

Algorithm 3 is established. œ

Next it is established that Algorithm 3 is correct in the

sense that an optimal supervision policy is generated.

Proposition 5 (Optimality): For a terminating plant

Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP,s,C Þ, the supervision policy

computed by Algorithm 3 is optimal in the sense of

Definition 13.

Proof: Let G(�) have the state transition cost matrix &,

measure m½0�, no disabled events, i.e., D0
¼ ;. Let G(�) be

configured as the supervised plant G?ð�Þ by application

of Algorithm 3 when it stops.
Let Gy be another configured plant distinct from G?.

Let D?
� C and Dy � C be the respective sets of

disabled transitions and �? and �y be the respective

measures for G? and Gy; and D?
6¼ Dy.

Let the following set differences be denoted as:

4D,D?
nDy and rD,Dy nD?. An application of

Algorithm 3 yields

. 8i, j �?i > �?j ¼) all controllable transitions qi
!

� qj are

disabled.
. 8i, j �?i %�

?
j ¼) all controllable transitions qi

!

� qj are

enabled.
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To change the plant configuration from G? to Gy, all
transitions in 4D are enabled and all transitions in
rD are disabled. Since any such change requires us to
either disable a transition qi!� qj where �?i 	 �

?
j or

enable a disabled transition qi!� qj where �?i > �?j , it
follows from Corollary 1 that my%E m?.
Since Gy is an arbitrary configuration distinct from

G?, it follows that G? is an optimal supervision policy
in the sense of Definition 13. œ

In the reported work on discrete event control of non-
probabilistic regular languages (e.g., (Ramadge and
Wonham 1987)), the emphasis is on computing the
maximally permissive supervisor in the sense that the
supervised plant language is the supremal controllable
sub-language of the specification. A similar approach
is taken for probabilistic regular languages (Garg
1992a, b). In contrast, the measure-theoretic concept
in this paper computes a policy that maximizes the
elements of the language measure vector elementwise
to find a supervisor with maximal performance.
Proposition 5 shows that there exists at least one optimal
supervisor. Now it is shown that the optimal
supervisor computed by Algorithm 3 is unique in the
sense of being maximally permissive among all
policies that guarantee optimal performance of the
supervised plant.

Proposition 6 (uniqueness): Given an unsupervised
plant G(�), the optimal supervisor G?ð�Þ, computed by
Algorithm 3, is unique in the sense that it is maximally
permissive among all possible supervision policies with
optimal performance. That is, if D? and Dy are the dis-
abled transition sets, and m? and my are the language
measure vectors for G? and an arbitrarily supervised
plant Gy, respectively, then

m?�E my ¼)D?

 Dy � C : ð19Þ

Proof: If G? and Gy are distinct, then D#
6¼ D?. Given

m?�E m#, let G? be reconfigured to Gy by disabling and/or
re-enabling appropriate controllable transitions. It
follows from equation (18) that

0 ¼ my � m? ¼ I�&y
� ��1

&y �&?
� �

m?

) &y �&?
� �

m? ¼ 0: ð20Þ

The ith element of &y �&?
� �

m? is expressed as the
finite sum of real numbers

0 ¼

 
&y �&?
� �

m?

!
i

¼
X�
r¼1

Ti
r; ð21Þ

where 0 	 � 	 2CardðC Þ and each Ti
r is of the form:

Ti
r ¼

�irð�
?
i � �

?
j Þ > 0, if Ti

r arises due to disabling

qi
!

� qj for some qj 2 Q

�irð�
?
j � �

?
i Þ � 0, if Ti

r arises due to enabling

qi
!

� qj for some qj 2 Q

8>>>>><>>>>>:
ð22Þ

because each �ir represents event occurrence
probabilities and hence are positive, and the the logic
of disabling and re-enabling follows Algorithm 3.
Therefore, it follows from equation (22)
that Ti

r ¼ 0 8r 2 f1, . . . , �g.
Hence, it is necessary to re-enable controllable transi-

tions qi!� qj and disable the self loop at qi such that

�yi ¼ �
y

j for reconfiguration from Gy� to G?�. Note that
all such transitions are guaranteed to be enabled in G?�
(see line 10 in Algorithm 3). Therefore, given m?�E my,
it follows that D?

� Dy. That is, G?ð�Þ is unique for
all � 2 ð0, 1Þ in the sense that the configured plant is
maximally permissive among all other configurations
that yield the same optimal measure m?ð�Þ. œ

4.1 Optimal control of non-terminating plants

This section presents the optimal supervision problem
for non-terminating plants (i.e., with termination prob-
ability �¼ 0 at each state) having the structure
Gð0Þ ¼ ðQ,�, �,eP, s,C Þ and the corresponding stochas-
tic transition probability matrix is P. The rationale
for working on a terminating plant, instead of the
non-terminating plant is explained below.

By maximizing the measure mð�Þ for a given � 2 ð0, 1Þ,
an optimal control law can be derived based on the state
transition cost matrix &ð�Þ ¼ ð1� �ÞP of the supervised
plant language and the originally assigned s-vector.
Such an optimal control law is sought to be �-indepen-
dent in the sense of having the same disabling set
D � C for a given range of �, where � might be restricted
to be not too far away from 0þ. On the other hand, from
the perspective of numerical stability and accuracy in
computation of mð�Þ (see Definition 8), it is desirable to
have a relatively large positive value of �. The results
derived in this section serve toward establishing upper
bounds on � for which the optimal control law should
be �-independent and the associated computation is
numerically stable. The main objective is summarized
below.

A uniform non-zero probability of termination �? 2 ð0, 1Þ is to
be computed such that the terminating plant Gð�?Þ and the

10 I. Chattopadhyay and A. Ray
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non-terminating plant G(0) shall have the same the disabling set
D � C . However, in general, their measures could be different,
i.e., mð�?Þ 6¼E mð0Þ.

Proposition 7: Let ð1� �ÞP and mð�Þ be the state transi-
tion cost matrix and the measure of the plant
Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ. Then, for all qi, qj 2 Q,

there exists �?ij 2 ð0, 1� such that 8� 2 ð0, �?ijÞ, the sign

of �ið�Þ � �jð�Þ
� �

is fixed (i.e., positive, negative or

zero); and �?ij can be computed as an explicit function

of the stochastic matrix P and state characteristic
vector s.

Proof: Let ijð�Þ, �ið�Þ � �jð�Þ 8� 2 ð0, 1Þ, which is a
smooth function of �, and ijð0Þ ¼ lim�!0þijð�Þ. The

proof is based on the following two cases.

Case 1: No sign change of ijð�Þ in ð0, 1Þ ) �?ij ¼ 1.

This includes: ijð0Þ ¼ 0 and ðdkijð�Þ=d�
kÞj�¼0 ¼ 0 for all

k� 0 because ijð�Þ ¼ 0 8� 2 ð0, 1Þ by Proposition A.3.

Case 2: ijð�Þ changes sign in ð0, 1Þ; and

ð@rijð�Þ=@�
rÞj�¼0 ¼ �ij 6¼ 0 for some integer r� 0.

If r¼ 0, there exists �1 2 ð0, 1Þ such that ijð�1Þ ¼ 0 for

the first time. If r>0, it is possible that ijð0Þ ¼ 0.

Then, as � is increased from zero, ijð�Þ becomes non-

zero and there exists �1 2 ð0, 1Þ such that ijð�1Þ ¼ 0

again. Smoothness of ijð�Þ necessitates that
ð@rijð�Þ=@�

rÞj�¼�?
ij
¼ 0 for some �?ij 2 ð0, �1Þ. Then, it

follows from the Mean value Theorem that there exists

�2 2 ð0, �
?
ijÞ such that

@rþ1ijð�Þ

@�rþ1
��
�¼�2
¼
�ij
�?ij

for the given r� 0, Proposition A.2, triangular inequal-
ity, and the relation ijð�Þ ¼ �ið�Þ � �jð�Þ yield

�?ij ¼

����ð@r�ið�Þ=@�rÞ���¼0 � ð@r�jð�Þ=@�rþ1Þ���¼0����
ðrþ 1Þ! 2rþ3 inf�6¼0

���������I� Pþ �P
��1��������

1

� �rþ1

¼

jf½I�PþP ��1��P�gi �f½I�PþP ��1��P�gjj

8� inf�6¼0 I�Pþ�P½ ��1k k1ð Þ
; if r ¼ 0

I�PþP½ ��1 I� I�PþP½ ��1½ �
r
s

� 
i

� I�PþP½ ��1 I� I�PþP½ ��1½ �
r
s

� 
j

������
������

2r�3
�
inf�6¼0

�����
I�Pþ�P

��1����
1

�rþ1 ; if r > 0:

8>>>>>>>><>>>>>>>>:
ð23Þ

œ

Remark 3: For a non-terminating plant Gð0Þ ¼

ðQ,�, �, ~P, sÞ, let �? ¼ mini, j �
?
ij. Then, the plant config-

uration obtained by applying a single iteration of

Algorithm 3 to the �-parameterized plant Gð�Þ ¼
ðQ,�, �, ð1� �ÞeP, s,C Þ is identical for all � 	 �?.

The procedure of computing �? is summarized as

Algorithm 4.

Proposition 8: Complexity of computing a positive

bound for �? is Oðn3Þ where n is the number of

plant states.

Optional control of probabilistic finite-state systems 11
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Proof: Referring to Algorithm 4, the part within the

nested For loops (lines 10 to 32) is executed at most n2

times and each iteration involves only single-iteration

scalar operations. Thus the computational complexity

of this part is of the order of Oðn2Þ. Lines 5 and 6 involve

inversion of n� n dimensional non-singular matrices

and hence the complexity of execution is of the order

of Oðn3Þ. Proposition G (see Appendix) guarantees

that the complexity of computing P is, in general,

of the order of Oðn3Þ. Line 7, which computes

M2 ¼ inf�6¼0 k½I� Pþ �0P ��1k1, is a search problem.

However, since M2 appears only in the denominator of

the expressions for �curr, it follows that, if for some

� ¼ �0 6¼ 0 and by using

M2 ¼

�����I� Pþ �0P
��1����

1

ð24Þ

it is possible to obtain a positive lower bound of �?
in Algorithm 4. Since the computation of

k½I� Pþ �0P ��1k1 is of the order of Oðn3) due to the

matrix inversion, it is concluded that a positive lower

bound of �? can be computed with a complexity

of Oðn3Þ. œ

Remark 4: It is shown in (Chattopadhyay and Ray

2006a) that for any stochastic matrix P

�
I�Pþ�P

��1
¼
�
I�PþP

��1
þ

�
1��

�

�
P 8 � 6¼ 0

¼)

	�
I�PþP

��1
�P



þ

�
1

�

�
P : ð25Þ

Using M2 ¼ k½I� Pþ P ��1k1 instead of
M2 ¼ inf�6¼0 k½I� Pþ �P ��1k1 (i.e., using � ¼ 1) in

Algorithm 4 yields a value which satisfies the require-

ment stated in Remark 3 and therefore qualifies as �?.
Thus, the major advantage of this approximation is

having significantly smaller computational complexity

because the search involved in computing the infimum

is avoided at the cost of using a smaller value of �?,
which may make subsequent computation of measure

slightly more difficult due to possible ill-conditioning

(see Definition 8).

On account of Proposition 7 and Remark 3, Algorithm 3

is modified to solve the optimal supervision problem

for non-terminating plants and the modified version is

formally presented in Algorithm 5.

Proposition 9 (effectiveness): Algorithm 5 is an effec-
tive procedure (Hopcroft et al. 2001), i.e., it is guaran-
teed to terminate.

Proof: Comparison of Algorithm 3 and Algorithm 5
reveals that while the former assumes a fixed probability
of termination � at each state, the latter modifies
this parameter, denoted as �½k�? , at each iteration k. Let
�min ¼ min

�
�½1�? , �½2�?

�
and let D½1�ð�minÞ and D½2�ð�minÞ be

sets of disabled transition at the first and second itera-
tions, respectively, for the terminating plant Gð�minÞ.
Similarly, for the non-terminating plant G(0), let
D½1�ð0Þ and D½2�ð0Þ be the sets of disabled transitions
at the first and second iterations, respectively. It
follows from Remark 3 that D½1�ð0Þ ¼ D½1�ð�minÞ and
D½2�ð0Þ ¼ D½2�ð�minÞ.

Extending the above argument by induction based
on k iterations of Algorithm 5 and denoting
�min ¼ minð�½1�? , . . . , �½k�? Þ, an application of Algorithm 3
on a terminating plant Gð�minÞ yields

D½r�ð0Þ ¼ D½r�ð�minÞ 8r 2 f1, . . . , kg:

12 I. Chattopadhyay and A. Ray
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Proposition 4 states that, for an arbitrary plant,
Algorithm 3 is guaranteed to terminate within finitely

many iterations. Hence, Algorithm 5 is an effective

procedure. œ

Next, it is shown that the plant configuration obtained

by Algorithm 5 is optimal in the sense of Definition 13.

Proposition 10 (optimality): For a non-terminating

plant Gð0Þ ¼ ðQ,�, �,eP, s,C ÞÞ, the supervision policy

computed by Algorithm 5 is optimal in the sense of

Definition 13.

Proof: Let the set of disabled transitions computed at

the kth iteration Algorithm 5 be denoted by D
½k�
lim and

the termination probability be denoted by �½k�? .

Let the set of disabled transitions at the convergence

of Algorithm 5 be D
½m�
lim. Let �min ¼ minr2f1,..., ‘g

ð�½1�? , . . . , �½‘�? Þ > 0.
Let Gð�minÞ be a terminating plant with

&ð�minÞ ¼ ð1� �minÞP. It follows from the proof of

Proposition 9 that applications of Algorithm 3 to

Gð�minÞ and Algorithm 5 to G(0) yield the same set D

of disabled controllable events although the optimal

measures, being �-dependent would be different, i.e.,

mð�minÞ 6¼E mð0Þ.
Proposition 5 implies that the optimal disabling set

for a plant G(�) generates the the same set of disabled

controllable transitions for all 0 < �% �min. Because of

continuity of mð�Þ with respect to �, it is argued that

G?ð0Þ is optimal in the sense of Definition 13, i.e.,

m? ^E my, where Gyð0Þ is obtained by arbitrarily disabling

controllable transitions in G. This completes the

proof. œ

Next it is shown that the supervision policy computed by

Algorithm 5 is unique in the same sense as

Proposition 6.

Proposition 11 (Uniqueness): Let G(0) be an unsuper-

vised non-terminating plant and G?ð0Þ be the supervised

plant configured by Algorithm 5. Then, G? is unique in

the sense that it is maximally permissive among super-

vised plants that yield optimal performance based on

�-neighbours G(�) of G(0) (see Definition 11) for all

� 2 ð0, �?Þ, where �? is computed by Algorithm 4.

Equivalently, if Gyð�) is an arbitrarily supervised plant,

then the following condition holds:

�
m?ð�Þ^E myð�Þ

�^��
D?
� Dy

�_�
m?ð�Þ 6¼E myð�Þ

��
;

where m and D denote respective language measures and
sets of disabled transitions.

Proof: It follows from Proposition 10 that
m?ð0Þ^E myð0Þ. It also follows from Proposition that
m?ð�Þ^E myð�Þ for � 2 ð0, �?Þ. If m?ð�Þ�E myð�Þ, then G?ð�Þ
and Gyð�Þ are both optimal supervised configurations
of the unsupervised terminating plant G(�). It follows

from Proposition 6 that D?
� Dy; otherwise

m?ð�Þ 6¼E myð�Þ. œ

Proposition 12: Computational complexity of
Algorithm 5 is of the same order as that of Algorithm 3.

Proof: Algorithm 5 computes �? in each iteration and
complexity of this computation is Oðn3Þ, where n is the

number of states in the plant (see Proposition 8). Each
iteration of both Algorithm 3 and Algorithm 5 involves
computation of the measure vector m, whose complexity
is also Oðn3Þ because of n� n matrix inversion. Hence,
computational complexity of each iteration is Oðn3Þ
for both Algorithm 3 and Algorithm 5. Finally, the
argument presented in Proposition 9 implies that
the number of iterations in Algorithm 5 is of the
same order as that in Algorithm 3. This completes
the proof. œ

4.2 Testing of computational complexity

Proposition 4 shows that Algorithm 3 is an effective
procedure (Hopcroft et al. 2001), i.e., the solution is
guaranteed to converge in a finite number of iterations.
Extensive simulation suggests that the the maximum
number of iterations for Algorithm 3 is actually of poly-
nomial order in n, where n is the number of states in the
unsupervised plant. The result is illustrated in figure 6,
where the maximum number of required iterations

Imax is plotted against number, n, of plant states. For
each n, 10, 000 simulation runs were conducted for
synthesis of optimal plant configuration with randomly
generated entries in the pair

�
ð1� �ÞP, s

�
; and Imax

was chosen to be the maximum number of iterations
required by Algorithm 3 to converge; this is the most
conservative case. The plot in figure 1 shows a distinct
sub-linear variation. The following conjecture is made
based on these observations.

Conjecture 1 (polynomial convergence): Given a termi-
nating plant G(�) with a uniform non-zero probability of
termination � at each of the n plant states,

1. Algorithm 3 converges in at most O(n) iterations.
2. Computational complexity of Algorithm 3 is bounded

by Oðn4Þ.

Statement 2 in Conjecture 1 follows from Statement 1
and the following facts: Each iteration has complexity

of Oðn3Þ due to matrix inversion in the computation of

Optional control of probabilistic finite-state systems 13
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the language measure vector, and matrix inversion has
complexity of Oðn3Þ). Combination of Conjecture 1
and Proposition 12 implies that Algorithm 5 converges
in O(n) iterations and that complexity of the algorithm
is Oðn4Þ. Similar to the procedure, described above for
Algorithm 3, 10, 000 random simulation runs for each
n were conducted for testing Algorithm 5. Figure 2
shows the plot of average number of iterations required
to converge at each value of n in contrast to figure 1,
where the maximum number of iterations is potted. As
expected, the plot of figure 2 is also sub-linear.

5. Optimal control of three processor message decoding

This section presents the design of a discrete-event
(controllable) supervisor for a multiprocessor message

decoding system, described in an earlier
publication (Ray et al. 2004). The optimal supervisory
algorithm has been synthesized based on the algorithms
presented in earlier sections.

Figure 3 depicts the arrangement of the message
decoding system, where each of the three processors,
p1, p2 and p3, receives encoded messages that are to
be decoded. The processor p3 normally receives the
most important messages, and p1 receives the least
important messages. There is a server between each
pair of processors—s1 between p1 and p2; s2 between
p2 and p3; and s3 between p3 and p1. Each server is
connected to each of its two adjacent processors by
a link—the server sj is connected to the adjacent pro-
cessors pi and pk through the links Lij and Lkj, respec-
tively. Out of these six links, each of the three links,
L11, L12, and L21, is equipped with a switch to disable
the respective connection whenever it is necessary;
each of the remaining three links, L22, L32, and L33,
always remain connected. Each server si is equipped
with a decoding key ki that, at any given time, can
only be accessed by only one of the two processors,
adjacent to the server, through the link connecting
the processor and the server. In order to decode the
message, the processor holds the information on
both keys of the servers next to it, one at a time.
After decoding, the processor simultaneously releases
both keys so that other processors may obtain
access to them.

Figure 4 depicts the unsupervised plant model of the
decoding system as a finite state automaton, where
state 1 is the initial state. The event pij indicates that
processor pi has accessed the key kj; and the event fi
indicates that the processor pi has finished decoding
and (simultaneously) released both keys in its possession
upon completion of decoding. The events fi
are uncontrollable because, after the decoding is
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0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

No. of plant states 

N
o.

 o
f i

te
ra

tio
ns

 

Figure 2. Number of iterations to converge in Algorithm 5.
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initiated, there is no control on when a processor finishes

decoding.
Table 1 lists the event cost matrix e&. Two different

control specifications are investigated. The first set of

specifications, which emphasizes avoiding deadlock, is

represented by the s vector in the first column of

table 2. The second set of specifications, which focuses

on increasing the throughput of processor 1, is repre-

sented by the s vector in the second column of table 2.

The positive elements of the s vector are assigned to

the states 8 to 16 that represent successful decoding of

each processor. The s values of the deadlock states 26

and 27, where each processor holds exactly one key

and hence no processor releases its key, are assigned

negative values. The remaining states are non-marked

and are assigned zero weights.
Algorithm 5 is applied to obtain the sequence of

measure vectors for the two control specifications.

The results of successive iterations, enumerating the

renormalized measure vectors, are presented in Table 3

and 4 respectively. The last column in each table is

the optimal renormalized measure vector. The

optimization requires 7 iterations in Case 1 and 5

iterations in Case 2.
The optimal configurations for the plant obtained

under Algorithm 5 are depicted in figures 5 and 6 respec-

tively. For supervisor policy 1, the controlled plant is

not trim and, for supervisor policy 2, there are discon-

nected states in the controlled model. This is interpreted

as the supervisor successfully preventing the plant

from visiting these states. The critical values for the

termination probability �? computed by the optimiza-

tion algorithm for each control specification is shown

in figure 7.

Next the stable probability distributions of the plant
states are compared for the following three cases:

. Open-loop or unsupervised plant

. Plant with the optimal supervision policy for
specification 1

. Plant with the optimal supervision policy for
specification 2

The distributions are obtained by considering the first
row of the matrix P , based on the measure �1

1
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Figure 4. Finite state model of the message decoding system.

Table 1. Event occurrence probabilities for

processor models.

p11 p13 p21 p22 p32 p33 f 1 f 2 f 3

0.16 0.04 0.16 0.16 0.16 0.32 0.00 0.00 0.00

0.00 0.16 0.00 0.26 0.26 0.32 0.00 0.00 0.00

0.37 0.00 0.21 0.21 0.21 0.00 0.00 0.00 0.00

0.32 0.11 0.26 0.00 0.00 0.32 0.00 0.00 0.00

0.00 0.11 0.00 0.28 0.28 0.33 0.00 0.00 0.00

0.25 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.00

0.28 0.11 0.28 0.00 0.00 0.33 0.00 0.00 0.00

0.00 0.00 0.00 0.39 0.39 0.00 0.22 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.14 0.00 0.00 0.00 0.43 0.00 0.43 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.34

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.25 0.00 0.00 0.00 0.75 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00

0.00 0.25 0.00 0.00 0.00 0.75 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.34

0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.34

Table 2. Vectors for control specifications.

Case 1 Case 2

0.000 0.010 0.000 0.000 1.000 0.000

0.000 0.020 0.000 0.000 0.020 0.000

0.000 0.020 0.000 0.000 0.020 0.000

0.000 0.020 0.000 0.000 0.020 0.000

0.000 0.040 0.000 0.000 0.040 0.000

0.000 0.040 0.000 0.000 0.040 0.000

0.000 0.040 0.000 0.000 0.040 0.000

0.010 0.000 �1.000 1.000 0.000 �0.200

0.010 0.000 �1.000 1.000 0.000 �0.200

Optional control of probabilistic finite-state systems 15

*** 2006 style [23.4.2007–5:01pm] [Revised Proof] [1–20] [Page No. 15] {TANDF_REV}TCON/TCON_A_228536.3d (TCON) TCON_A_228536



corresponding to state 1 which is the initial state in both
cases. If the stochastic matrix P is primitive (i.e., irredu-
cible and acyclic), then all rows of P would be identical.
However, primitiveness of P is not guaranteed even if
the unsupervised plant model have this property because
any subsequent event disabling may cause loss of
reducibility or acyclic properties.
The results on evolution of the distribution are plotted

in figure 8. While the unsupervised plant has a finite
probability of reaching the deadlock states 26 and 27,
the optimal supervisors in both cases successfully
prevent occurrence of deadlock in the sense that the
stable occupation probabilities for states 26 and 27 are
zero for each supervisor. However, supervisor 2
increases the throughput of processor 1 as seen from
the increased probability of occupying states 1 and 2.

6. Summary, conclusions, and recommendations for

future work

This paper presents the theory, formulation, and
validation of optimal supervisory control policies for
dynamical systems, modelled as probabilistic finite

state automata. The procedure for synthesis of the opti-
mal control policy relies on a (renormalized) signed
real measure of regular languages (Chattopadhyay and
Ray 2006a) to construct the performance index. The
language measure is based on the state transition

Table 3. Iteration vectors for multi-processor model: case 1.

Itr 1 Itr 2 Itr 3 Itr 4 Itr 5 Itr 6 Itr 7

�0.0616 0.0006 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0001 0.0063 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0003 0.0055 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0011 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0002 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0003 0.0055 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0013 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0010 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0011 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0001 0.0063 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0001 0.0000 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0009 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0000 0.0000 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0003 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0003 0.0000 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0014 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143

Table 4. Iteration vectors for multi-processor model: case 2.

Itr 1 Itr 2 Itr 3 Itr 4 Itr 5

0.0598 0.2076 0.2879 0.3245 0.3245

0.0598 0.2074 0.2880 0.3245 0.3245

0.0598 0.2101 0.2879 0.3245 0.3245

0.0598 0.2167 0.2876 0.3232 0.3245

0.0598 0.2109 0.2878 0.3236 0.3245

0.0598 0.2084 0.2882 0.3245 0.3245

0.0598 0.2059 0.2878 0.3245 0.3245

0.0598 0.2090 0.2879 0.3245 0.3245

0.0598 0.2059 0.2878 0.3245 0.3245

0.0598 0.2175 0.2875 0.3230 0.3245

0.0598 0.2089 0.2879 0.3245 0.3245

0.0598 0.2105 0.2879 0.3245 0.3245

0.0598 0.2086 0.2882 0.3245 0.3245

0.0598 0.2078 0.2879 0.3245 0.3245

0.0598 0.2114 0.2878 0.3235 0.3245

0.0598 0.2076 0.2880 0.3245 0.3245

0.0598 0.2080 0.2880 0.3245 0.3245

0.0598 0.2059 0.2878 0.3245 0.3245

0.0598 0.2216 0.2872 0.3241 0.3245

0.0598 0.2059 0.2878 0.3245 0.3245

0.0598 0.2147 0.2879 0.3245 0.3245

0.0598 0.2116 0.2879 0.3245 0.3245

0.0598 0.2084 0.2879 0.3245 0.3245

0.0598 0.2105 0.2878 0.3232 0.3245

0.0598 0.2110 0.2878 0.3236 0.3245

0.0598 0.2077 0.2879 0.3245 0.3245

0.0598 0.2077 0.2879 0.3245 0.3245
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Figure 5. Optimal plant configuration for specification 1.
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probability matrix of the underlying finite-state Markov

chain model of the process and a characteristic vector of

state weights, which serves as the control specification.
The main contribution of the paper is reformulation

of the optimal supervisor synthesis algorithm (Ray

et al. 2004, 2005) for probabilistic finite state plant

models in terms of the renormalized measure and

extension of the technique to general non-terminating

probabilistic models. Specifically, the work reported in

this paper removes a fundamental restriction of earlier

analysis (Ray et al. 2004, Ray 2005), namely, each row

sum of the state transition cost matrix & being strictly

less than one, instead of being exactly equal to one.

The novel concept of language-based control synthesis,

presented in this paper, allows quantification of plant

performance instead of solely relying on its qualitative

performance (e.g., permissiveness), which is the current

state of the art for discrete event supervisory

control (Ramadge and Wonham 1987, Cassandras and

Lafortune 1999).
The following conclusion is drawn in view of using the

language measure for construction of the performance

index for deriving an optimal control policy. Like any

other optimization procedure, it is possible to choose

different performance indices to arrive at different

optimal policies for discrete event supervisory control.

Nevertheless, usage of the language measure provides

a systematic procedure for precise comparative evalua-

tion of different supervisors so that the optimal control

policy(ies) can be unambiguously identified. These

theoretical results also lay the foundation for extension

of the language-measure-theoretic framework to plant

modelling and control, where all events may not be

observable at the supervisory level.
The paper provides details of the algorithms that are

required for synthesis of the optimal supervisory control

policy. These algorithms are executable in real time on

commercially available platforms. Computational com-

plexity of the presented algorithms is polynomial in

the number of plant model states. The concepts are

elucidated with simple examples and a relevant engineer-

ing example. As such it is straight-forward to develop

real-time software codes in standard languages, based

on the algorithms provided in this paper.
There are several issues that need to be addressed for

implementation of the theory of discrete-event supervi-

sory control in an operating plant. For example, the

events must be generated in real time, based on physical

measurements, to provide the supervisor with the
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Figure 6. Optimal plant configuration for specification 2
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current information on the plant; this is beyond what is
done off-line for construction of the plant model and
control synthesis. Similarly, the event disabling/enabling
decisions of the supervisor must be translated in real
time as appropriate actions to control the plant.

6.1 Recommendations for future research

Synthesis of supervisory control systems may become a
significant challenge if some of the events are delayed,
intermittent, or not observable at all, possibly due to
sensor faults or malfunctions in network communication
links. In that case, the control algorithms may turn out
to be computationally very complex because of
delayed or lost information on the plant dynamics.
Future work in this direction should involve research
on construction of language measures under partial
observation (Chattopadhyay and Ray 2006b) and
associated synthesis of optimal control policies to miti-
gate the detrimental effects of loss of observability.
The latter research could be an extension of the work
on optimal control under full observation, reported in
this paper.
It would be a challenging task to extend the concept

of (regular) language measure for languages higher up
in the Chomsky hierarchy (Hopcroft et al. 2001) such
as context-free and context-sensitive languages. This
extension would lead to controller synthesis when the
plant dynamics is modelled by non-regular languages
such as the Petri net (Cassandras and Lafortune 1999,
Murata 1989). The research thrust should focus
on retaining the polynomial order of computational

complexity.
Another critical issue is how to extend the language

measure for timed automaton, especially if the events
are observed with varying delays at different states.

Another research topic that may also be worth investi-
gating is: how to extend the GF(2) field, over which
the vector space of languages is defined (Ray 2005), to
richer fields like the set of real numbers.
Areas of future research also include applications of

the language measure in anomaly detection, model iden-
tification, model order reduction, and analysis and
synthesis of interfaces between the continuously-varying
and discrete-event spaces in the language-measure
setting. Future research for advancement of the theory
of optimal supervisory control for discrete event systems
include the following areas:

. Robustness of the control policy relative to unstruc-
tured and structured uncertainties in the plant model
including variations in the language measure
parameters (Lagoa et al. 2005)

. Control synthesis under partial observation to accom-
modate loss of observability at the supervisory level

possibly due to sensor faults or communication link

failures (Chattopadhyay and Ray 2006b)
. Construction of grammar-based measures, instead of

memory-less state-based measures (Chattopadhyay

and Ray 2005), for non-regular languages when

details of transitions in plant dynamics cannot be

captured by finitely many states
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Appendix A: Derivatives of renormalized measure

This appendix establishes bounds on the derivatives of

the renormalized measure mð�Þ for all � 2 ð0, 1Þ and

computes the limits of the derivatives as �! 0þ as an

extension of what was reported in the previous

publication (Chattopadhyay and Ray 2006a).
The main result on boundedness of the derivatives of

�ð�Þ are presented as propositions. Specifically, the

results reported in Chattopadhyay and Ray (2006a)

are combined as the next two propositions.

Proposition A.1: Let �ð�Þ, � I� ð1� �ÞP½ �
�1, where P

is a ðn� nÞ stochastic matrix and n 2 N. Then,

ðiÞ 8 k 2Nnf1g

lim
�!0þ

@k�ð�Þ

@�k
¼�k lim

�!0þ

@k� 1�ð�Þ

@�k� 1
PþP½ � I�PþP½ �

�1

ðiiÞ lim
�!0þ

@k�ð�Þ

@�k

¼

½I�PþP
��1
�P , if k¼ 1

ð�1Þkk!½I�PþP ��1

� I� I�PþP½ �
�1

� �k�1
, if k 2Nnf1g:

8>><>>:

Proof: Given in Chattopadhyay and Ray (2006a, x 3,

pp. 1111–1112 as Corollary 3 and Corollary 6). œ

The next proposition establishes bounds on the deriva-

tives of mð�Þ in an elementwise sense by computing

bounds on the induced sup-norm of the derivatives of

�ð�Þ. Recall that s has been defined to have infinity

norm equal to 1.
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Proposition A.2

�����@k�ð�Þ@�k

�����
1

	 k! 2kþ1

 
inf
�6¼0

�����I�Pþ�P
��1����

1

!k

8� 2 ½0,1�:

Proof: Given in of Chattopadhyay and Ray (2006a,
x 3, p. 1113 as Proposition 5). œ

Proposition A.3: Denoting the ith element of the kth

derivative of the measure vector as ð@k�ð�Þ=@�kÞ
��
i
, it

follows that

8k 2 f1, . . . , ng,
@k�ð�Þ

@�k
��
i
¼
@k�ð�Þ

@�k
��
j

¼)8� 2 ½0, 1�, �ð�Þ
��
i
¼ �ð�Þ

��
j
;

where n is the number of states in the plant model.

Proof: First it is noted that

�ð�Þ ¼ �
X1
k¼0

ð1� �ÞkPks 8� 2 ð0, 1�

¼ �
X1
k¼0

&kð�Þs 8� 2 ð0, 1�: ð26Þ

Since &ð�Þ is a matrix of dimension n� n, it follows
from the Cayley–Hamilton Theorem (Bapat and

Raghavan 1997) that integral powers of &ð�Þ can be

expressed as polynomials of degree n� 1 as follows:

8r 2 N, &rð�Þ ¼
Xn�1
k¼0

ck&
kð�Þ with ck 2 C: ð27Þ

Since each term in the summation on the left hand side
of equation (26) is a polynomial in � of degree n� 1, it

follows that the summation is also a polynomial in

degree n� 1 (since the summation exists due to the

sub-stochastic property of &ð�Þ). Then it follows that

each element of �ð�Þ is a polynomial of degree n. The

result then follows from continuity. œ

Proposition A.4: For any stochastic matrix P of

dimension n� n, the complexity of computing the limit-

ing matrix P is of the order of Oðn3Þ.

Proof: Since the limit limk!1 ð1=kÞ
Pk�1

j¼0 Pj ¼ P

always exists, it is possible to compute P within any

specified precision simply by computing the sumPk�1
j¼0 Pj followed by division by k, for a large

enough value of k. The procedure is summarized in

Algorithm 6.

Referring to Line 7 of Algorithm 6, it is observed that
Q½k� is a stochastic matrix for all k and hence it follows
that the algorithm is guaranteed to terminate in
ð1=epsÞ iterations, independent of n. Each iteration
involves a single matrix multiplication (P� A) and
hence algorithmic complexity is of the same order as
multiplication of two n� n matrices, i.e., 	 Oðn3Þ.
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Abstract

This paper presents an application of the recently developed theory of language-measure-based discrete event supervisory (DES)

control to aircraft propulsion systems. A two-layer hierarchical architecture is proposed to coordinate the operations of a twin-engine

propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, as necessary for fulfilling

the mission objectives. Each engine, together with its continuously varying control system, is operated at the lower level under the

supervision of a local discrete-event controller for condition monitoring and life extension; the gain-scheduled feedback controller that is

used to maintain the specified performance of the turbofan engine is kept unaltered. A global DES controller at the upper level

coordinates the local DES controllers for load balancing and health management of the propulsion system.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Discrete event supervisory control; Optimal control; Aircraft propulsion systems
1. Introduction

Discrete-event dynamical behavior of physical plants is
often modeled as regular languages that can be realized by
finite-state automata (Hopcroft, Motwani, & Ullman,
2001). This paper focuses on development of intelligent
decision and control algorithms based on the theory of
discrete event supervisory (DES) control (Cassandras &
Lafortune, 1999; Ramadge & Wonham, 1987) for a twin-
engine aircraft propulsion system.

The DES control system is designed to be hierarchically
structured in the following sense. The continuously varying
control system of each engine interacts with its own local
DES controller for health monitoring and intelligent
control; and the operational information is abstracted
and reported to the propulsion-level DES controller that
coordinates the operation of two engines. Furthermore, the
propulsion-level supervisory control system allows interac-
tions with exogenous inputs, such as human operators and
inputs from other units (e.g., flight control, structural
e front matter r 2006 Elsevier Ltd. All rights reserved.

nengprac.2006.05.011

ing author. Tel.: +1814 865 6377; fax: +1 814 863 4848.

ess: axr2@psu.edu (A. Ray).
control, energy management, and avionic systems) of the
vehicle management system for flexibility of making on-line
modifications in the mission objectives. A good feature of
the proposed DES control system is that the supervisory
control policy can be adaptively updated on-line at both
engine and propulsion levels and that the system is tolerant
of small anomalies and component faults.
Although the theory of DES control has been developed

for almost two decades (Ramadge & Wonham, 1987),
only very few applications have been reported in literature.
An apparent reason is that, until recently, no quantitative
analytical tool was available for design and evalua-
tion of DES controllers. The work reported in this
paper makes use of a quantitative measure of regular
languages (Ray, 2005; Ray, Phoha, & Phoha, 2005),
and is a novel application of hierarchical DES control
synthesis for the nonlinear complex dynamical system of
twin-engine aircraft propulsion. The real-time implementa-
tion of the DES control scheme is challenging because it
requires integration of several disciplines (Kumar & Garg,
1995) such as systems theory, computer hardware and
software, and domain knowledge of gas turbine engine
propulsion.

www.elsevier.com/locate/conengprac
dx.doi.org/10.1016/j.conengprac.2006.05.011
mailto:axr2@psu.edu
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The DES control of the propulsion system is validated
on a simulation test bed. Thus, feasibility of the DES
concept is demonstrated for enhanced operation and
control of twin-engine aircraft propulsion in the following
areas: (i) real-time decision-making for propulsion control
(e.g., load balancing between the engines), (ii) damage
reduction (with no significant loss of performance) via life
extending control, and (iii) enhanced performance and
reliability of the mission.

The terms controller and supervisor are used interchange-
ably in this paper. The phrases ‘‘Upper level’’ and
‘‘Propulsion level’’ are synonymous and so are the phrases
‘‘Lower level’’ and ‘‘Engine level.’’ The paper is organized
in six sections including the present one and an appendix.
Section 2 describes the real-time simulation test bed of the
twin-engine propulsion system. Section 3 presents the
syntheses of the engine-level DES control and propul-
sion-level DES control systems. Section 4 presents the
simulation results and discusses implications of the
controller design. Section 5 discusses the theoretical and
simulation results of performance evaluation for the
propulsion system under DES control. The paper is
summarized and concluded in Section 6. The appendix
provides supporting information and mathematical back-
ground for the control policy synthesis in Sections 3 and 5.
2. Description of the test bed for propulsion system

simulation

This section presents implementation of DES control on
a real-time simulation test bed of a twin-engine aircraft
propulsion system, where the engine model is similar, in
complexity and details, to that reported by Diao and
Passino (2001) and modular aero propulsion system
simulation (MAPSS) model (Parker & Guo, 2002). The
objective is to validate the theory of optimal DES control
for a real-world nonlinear complex dynamical system such
as aircraft propulsion.
Computer 2 (Gas Turbine Engine 1)

Local DES (Client)

Engine Model (Server)

State, event & sensory 
info to higher level DES

Co

Computer 1 (Upper L

Upper level discrete e
(DES) controller for

(Serve

Fig. 1. Supervisory control archite
A DES controlled propulsion system has been designed
and implemented on a simulation test bed that consists of
three networked computers using the client/server concept.
One of the three computers hosts the propulsion system
coordinator for health monitoring of the engines and
accordingly making intelligent decisions (e.g., load balan-
cing). The other two computers run separate copies (which
may or may not be different depending on the health of the
individual engines) of the gas turbine engine simulation
model including its continuously varying gain-scheduled
feedback control system and a local discrete-event super-
visor. The test bed is capable of simulating different
dynamics for individual engines due to non-uniform
operating conditions. Each of the engine simulators
integrates the event-driven discrete dynamics modeled by
finite-state automaton as well as time-driven continuous
dynamics modeled by ordinary differential equations
through continuous-to-discrete and discrete-to-continuous
interfaces (Fu, Yasar, & Ray, 2004). Fig. 1 shows the
supervisory control architecture of the engine propulsion
control system. This software architecture is flexible to
adapt deterministic finite state automaton (DFSA) models
and controller designs for other complex dynamical
systems. Each major function in the simulation program
has a modular structure as implemented on the three
networked computers of the simulation test bed.
The C++ code of the multi-layer DES control system is

superimposed on the existing FORTRAN simulation code
of the turbofan engine model and the associated con-
tinuously varying engine control system through a C++
program. Specifically, the wrapper program interfaces the
major inputs and outputs of the FORTRAN simulation
code with the rest of the program in the C++ environ-
ment. This approach takes advantage of the available
FORTRANmodels as individual modules of the integrated
C++ program without making any significant changes.
The FORTRAN code of the turbofan engine simulation

program, which consists of high-order nonlinear differen-
tial and difference equations and supporting algebraic
Computer 3 (Gas Turbine Engine 2)

ntrol command & thrust
from higher level DES

evel Controller)

vent supervisory 
 load balancing

r)

Local DES (Client)

Engine Model (Server)

cture of the propulsion system.
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equations, has been designed for both steady-state and
transient operations of a generic jet engine (Diao &
Passino, 2001; Parker & Guo, 2002); and different control
strategies have been reported in the literature (Diao &
Passino, 2001; Fu et al., 2004; Litt, Parker, & Chatterjee,
2003). With the proper inputs such as power lever angle
(PLA), and operating condition parameters (e.g., altitude,
forward speed, and ambient temperature), the FORTRAN
engine model simulates the engine operations from a steady
state to transients and to (possibly) other steady states.
This simulation code is a stand-alone program with a gain-
scheduled feedback controller. The engine simulation
model provides various sensor data (e.g., combustion-
chamber temperature and high-pressure and low-pressure
turbine speeds) together with other critical information
(e.g., simulation step size and simulation cycle number),
which are collected by the C++ wrapper program and
exchanged with the DES controllers through a typical
message application protocol interface (API) communica-
tion routine. This communication protocol sends and
receives message packages through TCP and/or UDP
networks. The typical delay in this protocol interface is
mainly due to the network communications and is found to
be less than 1ms. Since the engine and flight simulations
use integration step sizes in the order of 10–20ms, the
communication delays do not have a major bearing on
performance of the proposed control architecture.

Fig. 2 shows the architecture of the engine-level plant
and DES controller implementation, which has two
replicas, with possible different parameters and initial
conditions, in two different computers. Fig. 3 shows the
organization of the propulsion-level DES controller
together with its own (discrete) event generator, which is
implemented on a third computer and makes use of the
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Message API to communicate with the other two
computers.
The DES controller design has two important compo-

nents that serve as interfaces between the continuously
varying control system and the discrete-event supervisory
controller—one is event generator and the other is action
generator. Event generator receives continuously varying
sensor data from the engines. The data along with other
information like estimated state and external inputs are
used to generate events that, in turn, are inputs to the
unsupervised DFSA model of engine operation. The DFSA
model is constructed based on the operation scenario; the
details are discussed later in Section 3. The DFSA model
also serves as a state estimator and provides information
on engine states and (both controllable and uncontrollable)
events for the discrete-event supervisor to take appropriate
actions. Event behavior in the state-based DFSA model is
dependent on the state where the event is generated and not
on the history or the path of how the state is reached.
The DES controller represents the control policy applied

to the DFSA model of engine operation, and it could be a
conventional DES controller based on the control specifi-
cations (Ramadge & Wonham, 1987) provided by an
experienced designer; alternatively, an optimal discrete-
event supervisor can be designed by the quantitative
method (Fu et al., 2004; Ray, Fu, & Lagoa, 2004). In
both cases, the DES controller takes the estimated states as
inputs and generates control commands (of controllable
event disabling or enabling) as outputs, which are
transmitted through a Message API communication
routine to the action generator. The primary task of the
action generator is to convert the control commands from
the supervisor into necessary input functions for the
continuously varying plant.
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3. Synthesis of DES controllers

One of the major tasks of the supervisory decision
making is fusion of the (possibly) redundant, conflicting,
and incomplete information to make timely decisions. Such
information can be derived from different types of sensor
data (Volponi, Brotherton, Luppold, & Simon, 2003) as
well as operational history and the knowledge-base
generated from pilot’s personal experience. Computer-
based advanced analytical techniques are necessary for
fusion of the time series data available from multiple
sensors and other relevant non-sensor-based information
to make specific inferences that could not be achieved
through the sole usage of the available sensory informa-
tion. Improved performance may not result simply from an
increased volume of sensor data and engine information
unless the ensemble of information is systematically
processed in the context of the engine operational
conditions and mission objectives (Tolani, Yasar, Ray, &
Yang, 2006). In order to achieve the desired performance
of a DES controller, it is essential to have an effective event
generation algorithm to ensure fusion of the heterogeneous
information for: (i) enhanced resolution and reduced
ambiguity in decision and control; and (ii) advantageous
trade-offs between probability of false alarms and missed
detection (Basseville & Nikiforov, 1993).

The unsupervised dynamics of engine operations are
modeled as a DFSA, based on postulated scenarios. (Note
that the model may change for different mission objec-
tives.) In the present context, the DFSA model assumes
that a twin-engine aircraft is carrying out a routine
surveillance mission. The mission abortion is allowed at
certain states according to the operation scenario. Each
engine of the aircraft is equipped with a continuously
varying controller which is supervised by a local engine-
level DES controller. The primary objective of the local
DES controller is to strike the right balance between the
conflicting demands of higher performance from upper
level supervisor and limiting structural damage to the
engine components. The global propulsion-level DES
controller redistributes the load depending on the health
of the engine and thrust demand placed by the pilot.

3.1. Engine-level DES control

Fig. 4 presents the DFSA model of the unsupervised
engine operations for DES control. Table 1 lists the events,
where ‘‘C’’ denotes controllable events and ‘‘UC’’ denotes
uncontrollable events; and Table 2 lists the plant states.
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Table 1

Event list for the unsupervised engine model

Event Description Status

a Start C

b Warm up complete UC

c Shut the engine UC

d Detection of oscillations UC

e Nozzle area reduction C

f Engine fails UC

g Reduce performance/reduce damage C

h Increase performance/increase damage C

i Remain in the state C

j Reduce performance C

k Increase performance C

Table 2

State list for the unsupervised engine model

State Description Status

q1 Engine start

q2 Engine warm up

q3 High performance/High damage rate Marked (good)

q4 Oscillations Marked (bad)

q5 Low performance/Low damage rate Marked (good)

q6 Engine inoperable Marked (bad)

q7 Low performance/High damage rate Marked (bad)

q3
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q2q1
q4

q6

q 7
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Fig. 5. Supervised plant DFSA model at the engine level.

Table 3

Event list for the propulsion level DFSA model

Event Description Status

A Start engines C

B Warm up complete UC

C One engine deteriorates UC

D Redistribute the load (one engine is unhealthy) C

E Both engines deteriorate UC

F One good engine fails UC

G Both engines fail UC

H Increase performance C

I Reduce performance C

J Request to abort mission C

K Request accepted UC

L Request rejected (both engines are running) UC

M Mission accomplished UC

N Turn off engines UC

O Redistribute load (both engines are unhealthy) C

P Redistribute load (one engine has failed) C

Q Request rejected (one engine has failed) UC

R One bad engine fails UC
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The events and states for the DFSA models at the engine
level are denoted by lower case letters (e.g., a is the start
event and q1 is the engine start state). The engine can
operate in two regimes, one is high-performance regime
(state q3), where the damage rate is also high. The other is
low-performance regime (state q5), where the damage rate
is low. In the high-performance regime, the engine has a
tendency to go to state q4, where engine variables like
combustor temperature have been observed to have
oscillatory behavior. Temperature oscillations could be
extremely harmful for engine health (DeLaat & Chang,
2003) and must be avoided at all costs. Engine-level
controller chooses the regime of operation (state q3 or q5)
depending on two factors: thrust requirement at the
propulsion level and health of the engine, as explained
below.

Health of the engine is determined from the damage
accumulation that is a function of high-pressure turbine
gas inlet temperature and shaft speed; and in addition,
damage spikes (i.e., sudden jumps) at random time
intervals are introduced to simulate the damage in a real-
world engine. The DFSA model of the supervised engine
operations is shown in Fig. 5, where the dashed lines
indicate those controllable events that are disabled by the
optimal control algorithm, described in the Appendix and
citations therein. The state q7 in Fig. 5 becomes unreach-
able following the disabling action of the supervisor.
Therefore, all transitions, originating from the state q7,
are also shown with dashed lines as well as the state itself.
3.2. Propulsion-level DES control

One of the main tasks of the propulsion-level DES
controller is to redistribute the load between two engines
depending on the current health condition of each engine
and the thrust demand. A DES controller is expected to
ensure that this requirement is satisfied, regardless of being
optimal or not. The propulsion-level DES controller acts in
an advisory role for the mission-related decisions to
enhance the mission performance. However, the ultimate
decision for mission-related operations is left for the pilot.
Since the propulsion-level supervisor is designed to

execute the key decisions at the engine level, the model
for operating regimes of the propulsion system include the
Cartesian product of the state sets of two (locally
supervised) engine models. However, model order reduc-
tion via aggregation and deletion of unrealizable states is



ARTICLE IN PRESS

Table 4

State list for the propulsion level DFSA model

State Description Status

Q1 Aircraft on ground

Q2 Engines warming up

Q3 Both engines in high performance operation

Q4 One engine in high one engine in low

performance

Q5 Both engines in low performance operation

Q6 One engine stopped one engine in high

performance

Q7 One engine stopped one engine in low

performance

Q8 Both engines failed Marked (bad)

Q9 Decision for abort mission Marked (bad)

Q10 Mission successful Marked (good)

Q11 High damage detected for one engine

Q12 High damage detected for both engines 0 200 400 600 800
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Fig. 6. Power lever angle input.
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needed because the above Cartesian product may result in
a very large number of states. The events and states of the
unsupervised DFSA model at the propulsion level are listed
in Tables 3 and 4, respectively. Events and states for the
DFSA model at the propulsion level are denoted by upper
case letters (e.g., A is the start event and Q1 is the aircraft
on the ground state). Multiple occurrences of an event have
been indicated as single events as seen in three instances
(i.e., events D, O and P) in Table 3. The event ‘‘request to
abort mission’’ is controllable while the events such as
‘‘request accepted’’, ‘‘abort the mission’’ and ‘‘shut down
the engine’’ are uncontrollable events from the supervisor’s
perspectives.
4. Simulation experiments: results and discussion

Experiments were conducted on the simulation test bed,
described in Section 2, to validate the DES control concept.
Upon successful implementation of the software modules
on the client and server computers, several simulation
experiments were performed. The first set of experiments
was performed at the engine level to demonstrate the
interactions between the DES controller and continuous-
time dynamics of the engine. The design specifications
of the engine-level supervisor include reduction of the
engine component damage and consequently engine life
enhancement. Then, the effects of the propulsion-level
DES controller that is built upon the engine-level DES
controllers are investigated.

Fig. 6 exhibits the predetermined input profile that
excites both unsupervised and optimally supervised engine
models. Time responses of several outputs (combustor
outlet temperature, high-pressure turbine speed, net thrust
of the engine, and fuel flow into the main burner) over a
period of 12min were observed. The four plates in each of
Figs. 7 and 8 exhibit the response profiles of the above set
of plant variables for unsupervised and supervised engine
models, respectively. A comparison of plots in Figs. 7 and 8
indicates that the optimal DES control at the engine level
eliminates the high frequency oscillations that are present
in the unsupervised plant responses in Fig. 7. The super-
visor takes actions immediately upon detection of oscilla-
tions by an FFT algorithm. Without making any
alterations in the gain-scheduled controller of the engine,
the supervisory actions are implemented as a piecewise
constant term in the reference input to the (continuous
gain-scheduled) controller. In the continuous control
system, there are seven summation points for the feedback
loop, each providing a reference signal for a specific
actuator. It is found that the booster vane angle and nozzle
area manipulations have the most significant effects on the
response of engine variables (Tolani et al., 2006). In the
work reported in this paper, nozzle area is decreased by
20% of the nominal value. Due to supervisor’s actions, the
potentially sustained oscillations are quenched in less than
30 s after oscillations are observed, and the engine
operation is brought to steady state. Thus, sustained
oscillations are practically non-existent in the supervised
plant responses in Fig. 8. Since high-frequency oscillations
of temperature and pressure are the primary sources of
fatigue crack damage in the turbine blades, disks, and
stationary vanes, the supervisory control becomes very
effective for mitigation of structural damage in the engine
components. In contrast, in the unsupervised case, the
engine health would be adversely affected if the propulsion
system is operated in this way to achieve the mission
objectives.
The propulsion-level DES controller has three main

tasks. The first task is the intelligent decision making and
control of the twin-engine aircraft propulsion systems for
mission execution; the second task is to improve the overall
mission and operational behavior so that engine health can
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Fig. 7. Simulation output for the unsupervised case.
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be enhanced via damage reduction; and the third task is
load balancing between two engines so that the propulsion
system produces the thrust demanded by the flight control
system while attempting to enhance engine life. The issue of
load balancing becomes even more important when the
health conditions of two engines are significantly different
(one can be in ‘‘bad condition’’ and the other in ‘‘good
condition’’). If the situation comes to this point, then the
aim of the DES controller is judicious redistribution of the
load between two engines such that the ‘‘bad engine’’
carries lower load than the ‘‘good engine’’, subject to the
condition that the total thrust output of the engines
satisfies the mission and safety requirements. To satisfy
these design requirements, the propulsion-level DES
controller (Kumar & Garg, 1995; Ramadge & Wonham,
1987), which may or may not be optimal, is designed and
implemented over the unsupervised plant model.

Figs. 9 and 10 show the simulated outputs of two
engines, where both engines are in ‘‘good’’ health at the
start of simulation. The damage increment is a dimension-
less quantity denoting the damage accumulation as
percentage of the nominal value at each simulation cycle
and is attributed to the turbine blades. As the mission
progresses, due to an injected fault in Engine 2, the engine
deteriorates and starts to run at ‘‘bad’’ health condition
after 330 s. After 630 s, another fault is injected in Engine 1
and this engine also deteriorates. Thus, the load distribu-
tion of the engines varies in three regions (see Figs. 9 and
10). In the beginning, the load is equally distributed in
Region 1. Then the ‘‘good engine’’ (Engine 1) takes the
responsibility of producing higher thrust as seen in Region
2 in the plates of Figs. 9 and 10. Later on, both engines are
again loaded equally as seen in Region 3 when it is not
advisable to impose uneven thrust requirements. The first
damage event affects the performance of Engine 2 after
approximately 50 s in order to realize the thrust demand of
the pilot. At this point, the full thrust demand cannot be
satisfied if the load in Engine 2 is reduced. While the thrust
produced in Region 2 by each engine is not the same, the
most critical impact of the uneven load distribution is
formation of excess moment along the yaw axis of the
aircraft. However, it might be possible to counteract this
situation by adjusting the control surfaces of aircraft
(Yasar, Horn, & Ray, 2006).



ARTICLE IN PRESS

0 200 400 600 800
2500

3000

3500

4000

4500

5000

5500

6000

6500

Time (sec)

Time (sec)

N
et

 T
h

ru
st

 (
lb

)

F
u

el
 f

lo
w

 (
lb

/h
r)

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44
x 104

H
P

 T
u

rb
in

e 
S

p
ee

d
 (

rp
m

)

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 200 400 600 800

0 200 400 600 800
Time (sec)

Time (sec)

0 200 400 600 800
2500

3000

3500

4000

4500

5000

C
o

m
b

u
st

o
r 

T
em

p
er

at
u

re
 (

R
)

Fig. 8. Simulation output for the optimally supervised case.
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5. Evaluations of DES controllers

The language measure, described in Ray (2005) and Ray
et al. (2005), has been used to quantitatively evaluate
the impact of the propulsion-level DES controller on the
overall mission behavior. Given the state weights and the
state transition probabilities, the language measure pro-
vides a quantitative performance measure of the control-
lers. Supporting information and pertinent mathematical
background are given in the Appendix.

5.1. Identification of state transition probabilities

Quantitative analysis of DES controllers and synthesis of
an optimal DES controller require identification of the
state transition cost matrix. Similar to continuously
varying dynamical systems (CVDS), one must use the
techniques of system identification (Ljung, 1999) to
evaluate the parameters of the unsupervised DFSA plant
model, i.e., the elements ~p0ij of the event cost matrix ~P0

(see Definition 2 in the Appendix). As the number of
experiments increases, the identified event costs tend to
converge within an appropriately specified tolerance. For
stationary operation of the engine, since conditional
probabilities of the events are assumed to be time-
invariant, the identified event costs and their uncertainty
bounds can be determined. The probabilities of the events
such as deterioration and failure of an engine are triggered
by the event generation algorithm, based on the sensory
information. Nevertheless, it is not possible to simulate
some events, such as acceptance or rejection of the request
by the pilot, without a random event generator. The
randomization used in triggering this type of events has
certainly an effect on the identified event costs, but not
directly, since sensor-based events are not induced by this
randomization (Ray et al., 2005). As a typical case, Fig. 11
presents identification of event probabilities at state Q5,
where both engines are in low-performance operation.
Fifty simulated missions were performed for both

unsupervised plant G and supervised plant S/G to
construct the respective state transition probability ma-
trices, P0 and PS. The different visited states and the
triggered events were monitored and plotted to obtain the
particular ~P-matrices. After identifying the respective
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Fig. 9. Effect of conventional propulsion level DES controller on engine 1.
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Fig. 10. Effect of conventional propulsion level DES controller on engine 2.
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event probability matrices, ~P0 and ~PS, of G and S/G, the
state transition probability matrices P0 and PS are
computed using Definition 3 in the Appendix. Table 5
lists the P0-matrix of the unsupervised DFSA model at the
propulsion level.
5.2. Selection of characteristic values for evaluation of DES

controllers

Given the state characteristic values and the state
transition probabilities, the language measure serves
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Table 5

P matrix of the propulsion level DFSA model

State Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Q1 0 1 0 0 0 0 0 0 0 0 0 0

Q2 0 0 1 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0.899 0.037 0 0 0 0 0.051 0.014

Q4 0 0 0.500 0 0.500 0 0 0 0 0 0 0

Q5 0 0 0.772 0 0 0 0.014 0 0 0.149 0.065 0

Q6 0 0 0 0 0 0 0.250 0.125 0.625 0 0 0

Q7 0 0 0 0 0 0 0 0 1 0 0 0

Q8 0 0 0 0 0 0 0 0 0 0 0 0

Q9 0.415 0 0 0 0 0 0 0 0 0 0.512 0.073

Q10 1 0 0 0 0 0 0 0 0 0 0 0

Q11 0 0 0 0.044 0.370 0 0 0 0.587 0 0 0

Q12 0 0 0 0 0.333 0 0 0 0.667 0 0 0
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Fig. 11. Convergence of event cost identification.
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as a theoretical performance measure for quantitative
evaluation of DES controllers. The characteristic
values are assigned based on the designer’s percep-
tion for the importance of terminating on specific
marked states. For the propulsion-level DES controller,
the weights of the states are selected according to
each state’s importance (contribution) to the mission
management as

w̄ ¼ ½0 0 0 0 0 0 0 � 1:00 � 0:188 0:300 0 0�.
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Table 6

Iterations for optimal DES controller synthesis

State Unsupervised plant Iteration 1 Iteration 2

Q1 0.1260 0.2452 0.2452

Q2 0.1273 0.2477 0.2477

Q3 0.1286 0.2502 0.2502

Q4 0.1415 0.2617 0.2617

Q5 0.1572 0.2785 0.2785

Q6 �0.2555 �0.1238 �0.1238

Q7 �0.1510 0.0000 0.0000

Q8 �1.0000 �1.0000 �1.0000

Q9 �0.1525 �0.0353 �0.0353

Q10 0.4248 0.5428 0.5428

Q11 �0.0250 0.1132 0.1132

Q12 �0.0488 0.0919 0.0919

Table 7

Language measure and performance for propulsion level supervisors

Unsupervised Supervised Optimal

Language measure (lÞ 0.1260 0.2055 0.2452

Performance Index (mÞ 0.1276 0.1959 0.2480
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The non-marked states have no direct bearing on the
mission performance and hence each state (i.e., states Q1 to
Q7, Q11 and Q12Þ has been assigned zero weight. The
marked states, Q8, Q9 and Q10, which do have direct
bearing on the mission performance, are assigned non-zero
weights as follows:

Q8: Both engines failed, State Q9: Mission abort, State
Q10: Mission successful. They have relative weights of �1,
�0:188 and 0.3, respectively. The bad marked state, Q8, is
assigned the characteristic value of �1:0 because the
aircraft will most likely be destroyed (because of both
engines being non-functional) if the DFSA terminates on
this state. On the other hand, the good marked state, Q10:
Mission successful, is assigned the characteristic value of
þ0:3 based on its relative importance to the loss of the
aircraft. Therefore, by choosing the characteristic values in
this way, loosing one aircraft is made equivalent to
approximately three successful missions. The other bad
marked state, Q9: Mission abort, has also a negative
characteristic value which signifies the importance of this
state relative to a successful mission and a possible loss of
the aircraft. The selection of characteristic value for
mission abort is to quantitatively match the theoretical
(i.e., language measure-based) performance of the unsu-
pervised plant with its experiment-based performance
(which will be introduced in the next section). The
corresponding performance measures for the supervised
cases must also match with this selection provided that the
plant is modeled appropriately and the language measure
parameters, P-matrix and v̄-vector, are correctly assigned.

Using the relation l̄ ¼ ½I �P��1v̄ derived in Ray (2005),
the language measures (i.e., the theoretical performance of
the propulsion system) are calculated for unsupervised
plant model G and DES controlled plant S/G as
munsupervised ¼ 0:1260 and msupervised ¼ 0:2055, respectively.
It is seen that the DES controller used in the propulsion
level has a positive effect on the mission behavior of the
propulsion system.

5.3. Optimal DES controller synthesis and evaluation

After identifying the event cost matrix ~P0 of the
unsupervised plant G, the state transition cost matrix P0

is constructed (using Definition 3 in the Appendix). State
transition cost matrix is the only unknown input for the
optimal control algorithm to design the optimal DES
controller, since the other necessary parameters, such as the
characteristic vector v̄, are selected by the designer based
on the design requirements. Therefore, given the state
transition cost matrix P0 of the unsupervised plant and the
state characteristic vector v̄, the optimal DES controller
can be synthesized as described in the Appendix.

Table 6 lists the iterations of optimal control synthesis
for the propulsion-level supervisory control where the first
column belongs to the unsupervised plant G. The
performance measure of the unsupervised plant is negative
at the states Q6, Q7, Q8, Q9, Q11, and Q12 as indicated by
the bold scripts in Table 6. All controllable events leading
to these states are disabled and the resulting performance
measure at Iteration 1 shows sign change at states Q7, Q11,
and Q12 as indicated by italics in Table 6. All controllable
events leading to these states are now re-enabled for
further increase in performance at Iteration 2. However,
there is no sign change in the performance vector between
Iteration 1 and Iteration 2, which immediately shows
that the algorithm converged to the optimal solution
after this iteration. The synthesis is complete in Iteration 2
(i.e., there is no need to go for the Iteration 3) because there
is no sign change; moreover, the performance vector at
Iteration 2 shows also no improvement after the previous
iteration.
The performance of the optimal controller was com-

pared with that of unsupervised plant G and the supervisor
S that was designed using the conventional procedure
(Cassandras & Lafortune, 1999; Ramadge & Wonham,
1987). Theoretical performance of the supervisors can be
associated with the language measure of each supervisor, as
described in the Appendix. The language measures of the
unsupervised plant and conventional and optimally super-
vised plants at the propulsion level are listed in Table 7 that
also shows a close agreement between the analytically
generated language measures and experimentally deter-
mined values.
Results of simulation experiments have been used to

validate the DES controller performance based on the
language-theoretic analysis. The experimental perfor-
mance index is determined as a function of the relative
weights of the visited states. The mission outcomes of the
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unsupervised and supervised propulsion systems were
recorded during each simulated mission. The numbers of
missions ending at both good and bad marked states
were multiplied by the respective relative weights of the
states. That is, the experimental performance measure is
calculated as

n ¼
PN

i¼1 ni � wi

N
,

where ni is the number of missions ending at the ith state,
and N is the total number of experiments; and wi is the
characteristic weight of the ith state. The performance of
the unsupervised plant and the other two supervisors,
namely, conventionally designed supervisor (Ramadge &
Wonham, 1987) and language-based optimal supervisor
(Ray et al., 2004), are compared based on the observations
of mission execution on the simulation test bed. The
experimental evaluations of the performance for different
supervisors are presented in Table 7. Both theoretical and
experimental (simulation) evaluations of DES controllers
provide better mission management under optimal super-
vision. It is seen that the theoretical performance of the
supervisors is in quantitative agreement with the experi-
mental results, presented in Table 7. Optimal DES
controller, synthesized using the algorithm described in
Appendix and in Ray et al. (2004), has the highest
theoretical performance (i.e., highest language measure)
among all controllers. The results of the simulation
experiments concur with the theoretical measure of the
controllers in the sense that optimal supervisor yields the
best mission performance.

Remarks on the optimal supervisor design: At the first step
of the iterations, the performance measure of the un-
supervised plant is negative at states Q6, Q7, Q8, Q9, Q11,
and Q12. Therefore, controllable transitions to these states
should be disabled. It is observed that one engine is lost at
the states Q6 and Q7, implying that the events leading to
these states would cause the ‘‘one engine failed’’ condition
which is uncontrollable and hence cannot be disabled.
Similarly, the only transition to the state Q8 causes the
‘‘both engines failed’’ condition, which is also uncontrol-
lable; hence, this transition cannot be disabled either.
The transitions leading to states Q11 and Q12 are the
‘‘deterioration of engines’’ condition, which is directly
related to the damage information received from the
engine-level DES control system. Based on this informa-
tion, the propulsion-level supervisor makes a decision on
the health condition of the individual engines. Evidently,
this kind of sensory events are uncontrollable, so is the
engine deterioration event. The remaining state that should
be investigated is the state Q9, Mission abort. The optimal
control algorithm disables all mission abort requests, which
significantly increases the performance of the mission
behavior with increased risk of losing the aircraft. The
simulation experiments show that the mission performance
at the propulsion level increases under the optimal DES
controller, albeit with an increased probability of aircraft
loss. Table 7 shows a close agreement between the
analytically generated language measures and experimen-
tally determined performance data. It should be noted that,
the optimal control policy is likely to change if the elements
(i.e., individual state weights) of the v̄-vector are altered.

6. Summary and conclusions

This paper presents a quantitative approach to analysis
and synthesis of hierarchical DES control laws for aircraft
propulsion systems. The objectives are:
�
 Intelligent decision and control of distributed propul-
sion management systems, where each of the engines has
its own local DES control.

�
 Structural damage reduction and life extension of

aircraft engines without any significant loss of the
system performance.

�
 Decision making and mission planning modifications

through a high-level DES coordinator.

�
 Incorporation of optimal control laws for enhanced

mission management.

�
 Extension of this work to other complex dynamic

systems such as rotorcrafts and power plants simulation
test beds.

A decision and control architecture has been proposed to
coordinate the operations of a twin-engine propulsion
system. The DES control law has been validated for a twin-
engine aircraft propulsion system on a networked simula-
tion test bed. The plant dynamics in the simulation test bed
is built upon the model of a generic turbofan gas turbine
engine. The software architecture of the simulation test bed
is flexible for adaptation to arbitrary DFSA models and a
variety of DES control laws, including those that are
quantitatively analyzed using a language measure.
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Appendix Language measure and discrete event optimal

control

This appendix reviews the previous work on language
measure (Ray, 2005; Ray et al., 2005) and optimal control
policy (Ray et al., 2004) that is based on this measure with
no event disabling penalty. The background information
necessary to develop a performance index for the optimal
DES control law is introduced. Performance of DES
controllers is associated with the language measure
through out this paper.
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Let the dynamical behavior of a physical plant be
modeled as a deterministic finite state automaton (DFSA)
Gi � ðQ;S; d; qi;QmÞ, where Q is the finite set of states qj

with jQj ¼ n and qi 2 Q is the initial state; S is the (finite)
alphabet of events with jSj ¼ m; the function d : Q� S!
Q represents state transitions and Qm � Q is the set of
marked states which have some importance (positive or
negative) for the DFSA model.

Definition 1. The characteristic state weight function that
assigns a signed real weight to states is defined as: w : Q!

½�1; 1� such that

wj � wðqjÞ 2

½�1; 0Þ if qj 2 Q�m;

f0g if qjeQm;

ð0; 1� if qj 2 Qþm;

8><
>:

where Q�m � Q and Qþm � Q are the set of negatively and
positively marked states respectively. The ðn� 1Þ charac-
teristic vector is denoted as

v̄ � ½w1 w2 � � � wn�
T.

Definition 2. The event cost is the relative frequency of
occurrence of an event given the DFSA state at which the
event is generated, and is defined as
�
 p½skj qj � � ~pjk 2 ½0; 1Þ, relative frequency of occurrence
of event k at state j;

�
 ~p½skjqj� ¼ 0 if dðqj ;skÞ is undefined, i.e., event k is not

defined at state j.

The ðn�mÞ event cost matrix is denoted as ~P � ½ ~pij�:

Definition 3. The state transition cost of the DFSA is a
function p : Q� Q! ½0; 1Þ defined as the relative fre-
quency of transition from state j to state k such that
pðqkjqjÞ ¼

P
~pðsjqjÞ � pjk and the n� n state transition

cost matrix, denoted as P-matrix, is defined as

P ¼

p11 p12 � � � p1n

p21 p22 � � � p2n

..

. . .
. ..

.

pn1 pn2 � � � pnn

2
66664

3
77775.

Note that event costs and state transition costs are very
much similar to probabilities and probabilistic interpreta-
tion is given in Ray et al. (2005). In this sense, an event cost
can be analogous to the probability of an event to occur at
a state, and a state transition cost can be analogous to the
probability of leaping from one state to another.

Now we define the language measure in terms of the
signed state weight function w and the non-negative state
transition cost p.

Definition 4. The signed real measure of the language LðGiÞ

created by a DFSA Gi, initialized at the state qi 2 Q, is
defined as

mi � mðLðGiÞÞ.
The ðn� 1Þ real signed measure vector is denoted as

l̄ � ½m1 m2 � � � mn�
T.

It has been shown in Ray (2005), and Ray et al. (2005)
that the measure of the language LðGiÞ, where Gi ¼

ðQ;S; d; qi;QmÞ can be expressed as mi ¼
P

jpij mj þ wi.
Equivalently, in vector notation: l̄ ¼ Pl̄þ v̄. Therefore,
the measure vector l̄ is uniquely determined as

l̄ ¼ ½I �P ��1v̄.

In the gas turbine engine application, the penalty of
disabling controllable events (e.g., redistribution of thrust
between two engines, and nozzle area reduction for
individual engines) is set to zero as these manipulations
do not require any special effort.
The state-based optimal control policy is obtained by

selectively disabling controllable events to maximize the
measure of the controlled plant language. In each iteration,
the optimal control algorithm attempts to disable all
controllable events leading to ‘‘negatively marked states’’
and enable all controllable events leading to ‘‘positively
marked states’’. It has been also shown in Ray et al. (2004,
2005) that computational complexity of the control
synthesis is polynomial in the number of plant states.
The algorithm for synthesis of the optimal control policy

is summarized as follows: let G be the DFSA plant model
without any constraint of operational specifications. Let
the state transition cost matrix of the unsupervised plant
be: Pplant 2 Rn�n and the characteristic vector be:
v̄ � ½w1 w2 � � � wn�

T. Starting with iteration index k ¼ 0,
and P0 � Pplant, the control policy is constructed by the
following two-step procedure:

Step 1: For every state qj for which m0j o0, disable
controllable events leading to qj. Now, P1 ¼ P0 � D0,
where D0 � 0 is composed of event costs corresponding to
all controllable events that have been disabled at k ¼ 0.

Step 2: Starting with k ¼ 1, if mk
j � 0, re-enable all

controllable events leading to qj, which were disabled in
Step 1. The cost matrix is updated as: Pkþ1 ¼ Pk þ Dk for
k � 1, where Dk � 0 is composed of event costs corre-
sponding to all currently re-enabled controllable events.
The iteration is terminated when no controllable event
leading to qj remains disabled for which mk

j � 0, i.e., if there
is no sign change in the measure vector l̄ between two
consecutive iteration steps. At this stage, the optimal value
of the performance index, which is the language measure, is
l̄n ¼ ½I �Pn��1v̄.
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